Skip to main content
  • Publisher Correction
  • Open access
  • Published:

Publisher Correction to: Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study

The Original Article was published on 27 August 2019

Correction to: BMC Bioinformatics

https://doi.org/10.1186/s12859-019-2997-9

Following publication of the original article [1], the authors noticed that the following errors were introduced by pdf/html formatting issues. The original article has been corrected. The publisher apologizes to the authors and readers for these errors.

Page 9, first column:

The paragraph

“- o bt(A): sec) by the local vascular network within/sec) by the local vascular network within A during the previous time interval t − Δτ → t

Should be replaced with

“- o_bt(A) : Oxygen supply rate (pmols/sec) by the local vascular network within A during the previous time interval t − Δτ → t

In the subsequent paragraph, i.e. the paragraph starting starting with the phrase “ - gl_bt(A): Glucose supply rate … ” ,

the phrase “ interval−Δτ → t ” should be replaced with “ interval t − Δτ → t

Page 11, second column:

The equation \( \beta \ge 1-\frac{6{O}_{av}}{l_t(A){K}_{ATP}\varDelta \tau}\equiv \beta \_ \) should be \( \beta \ge 1-\frac{6{O}_{av}}{l_t(A){K}_{ATP}\varDelta \tau}\equiv \underset{\_}{\beta } \) .

In the subsequent sentence, i.e. “Since ao(β) is increasing, β_ is actually … ” the “β_ ” should be “ \( \underset{\_}{\beta } \) ”.

In the subsequent paragraph (first bullet point), in the sentence “ If β _  > β2, we have that … ” the “ β_ ” should be “ \( \underset{\_}{\beta } \) ”.

In the subsequent paragraph (second bullet point), i.e. “ If β _  ≤ β2, we have that for each β [max(β_, β1), β2] it holds that ao(β) ≥ 0. ” all occurences of “ β_ ” should be “ \( \underset{\_}{\beta } \) ”.

In paragraph 11a, first line, “ ao(β) ” should be “ agl(β) ”.

Page 12, first column:

In the sentence “ Case 2.2.1. If β > β2 or \( \overline{\beta}<{\beta}_1 \) or \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)<\mathit{\max}\left(\beta \_,{\beta}_1\right) \), the analysis above implies that … ” the inequality β > β2 should be \( \underset{\_}{\beta }>{\beta}_2 \) and the inequality \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)<\mathit{\max}\left(\beta \_,{\beta}_1\right) \) should be \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)<\mathit{\max}\left(\underset{\_}{\beta },{\beta}_1\right) \).

In the sentence “ Case 2.2.2. If β ≤ β2, \( \overline{\beta}\ge {\beta}_1 \) and \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)\ge \mathit{\max}\left(\beta \_,{\beta}_1\right) \)… ” the inequality β ≤ β2 should be \( \underset{\_}{\beta}\le {\beta}_2 \) and the inequality \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)\ge \mathit{\max}\left(\beta \_,{\beta}_1\right) \) should be \( \mathit{\min}\left(\overline{\beta},{\beta}_2\right)\ge \mathit{\max}\left(\underset{\_}{\beta },{\beta}_1\right) \) .

In the same paragraph, the mathematical expression \( \beta \in \left[\mathit{\max}\left(\beta \_,{\beta}_1\right),\mathit{\min}\left(\overline{\beta},{\beta}_2\right)\right] \) should be \( \beta \in \left[\mathit{\max}\left(\underset{\_}{\beta },{\beta}_1\right),\mathit{\min}\left(\overline{\beta},{\beta}_2\right)\right] \)

Page 12, second column:

In the sentence “ Again, we pick a random \( \overset{\sim }{\beta } \) in \( \left[\mathit{\max}\left(\beta \_,{\beta}_1\right),\mathit{\min}\left(\overline{\beta},{\beta}_2\right)\right] \). ” the mathematical expression \( \left[\mathit{\max}\left(\beta \_,{\beta}_1\right),\mathit{\min}\left(\overline{\beta},{\beta}_2\right)\right] \) should be \( \left[\mathit{\max}\left(\underset{\_}{\beta },{\beta}_1\right),\mathit{\min}\left(\overline{\beta},{\beta}_2\right)\right] \)

Page 14, second column:

The equations

$$ ob\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){v}_r+{sw}_t(A)\ {f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){v}_e\right)\bullet ob\ {\mathit{\max}}_t(A) $$
$$ glb\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){v}_r+{sw}_t(A){f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){v}_e\right)\bullet glb\ {\mathit{\max}}_t(A) $$

should be

$$ o\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){v}_r+{sw}_t(A)\ {f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){v}_e\right)\bullet o\_b\_{\mathit{\max}}_t(A) $$
$$ gl\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){v}_r+{sw}_t(A){f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){v}_e\right)\bullet gl\_b\_{\mathit{\max}}_t(A). $$

The equations

$$ ob\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){r}_3{v}_r+{sw}_t(A)\kern0.5em {f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){r}_4{v}_e\right)\bullet ob\ {\mathit{\max}}_t(A) $$
$$ glb\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){r}_3{v}_r+{sw}_t(A){f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){r}_4{v}_e\right)\bullet glb\ {\mathit{\max}}_t(A) $$

should be

$$ o\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){r}_3{v}_r+{sw}_t(A)\kern0.5em {f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){r}_4{v}_e\right)\bullet o\_b\_{\mathit{\max}}_t(A) $$
$$ gl\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-{f}_r\left({l}_t(A),{nc}_t(A)\right){r}_3{v}_r+{sw}_t(A){f}_e\left({l}_t(A),{nc}_t(A),{nn}_t(A)\right){r}_4{v}_e\right)\bullet gl\_b\_{\mathit{\max}}_t(A) $$

Page 15, first column:

The equations

$$ ob\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\kern0.5em \frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet ob\ {\mathit{\max}}_t(A) $$
$$ glb\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet glb\ {\mathit{\max}}_t(A) $$

should be

$$ o\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\kern0.5em \frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet o\_b\_{\mathit{\max}}_t(A) $$
$$ gl\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet gl\_b\_{\mathit{\max}}_t(A) $$

Page 15, second column:

The equations

$$ ob\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\kern0.5em \frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet ob\ {\mathit{\max}}_t(A) $$
$$ glb\ {\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet glb\ {\mathit{\max}}_t(A) $$

Should be

$$ o\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\kern0.5em \frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet o\_b\_{\mathit{\max}}_t(A) $$
$$ gl\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)=\left(1-\frac{l_t(A)+{nc}_t(A)}{M}{r}_3{v}_r+{sw}_t(A)\frac{M-{l}_t(A)-{nc}_t(A)-{nn}_t(A)}{M}{r}_4{v}_e\right)\bullet gl\_b\_{\mathit{\max}}_t(A) $$

The second equation appearing in this column, i.e.

$$ gl\_{b}_{t+\varDelta \tau}(A)={B}_{o\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)}\left(\kern0.5em gl\_{b}_t(A)+{r}_2\left(\left(\ \overline{gl_0}-{gl}_t(A)\ \right)/\varDelta \tau \right)\kern0.5em \right) $$

Should be

$$ gl\_{b}_{t+\varDelta \tau}(A)={B}_{gl\_b\_{\mathit{\max}}_{t+\varDelta \tau}(A)}\left(\kern0.5em gl\_{b}_t(A)+{r}_2\left(\left(\ \overline{gl_0}-{gl}_t(A)\ \right)/\varDelta \tau \right)\kern0.5em \right) $$

Reference

  1. Antonopoulos M, Dionysiou D, Stamatakos G, Uzunoglu N. Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study. BMC Bioinformatics. 2019;20:Article number: 442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markos Antonopoulos.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonopoulos, M., Dionysiou, D., Stamatakos, G. et al. Publisher Correction to: Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study. BMC Bioinformatics 20, 500 (2019). https://doi.org/10.1186/s12859-019-3102-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12859-019-3102-0