Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012; 13:667–72.
Article
CAS
Google Scholar
Peng RD. Reproducible research in computational science. Sci N Y. 2011; 334:1226–7.
Article
CAS
Google Scholar
Bustin SA. The reproducibility of biomedical research: Sleepers awake!. Biomol Detect Quantif. 2014; 2:35–42.
Article
Google Scholar
Baker M. 1500 scientists lift the lid on reproducibility. Nature. 2016; 533:452–4.
Article
CAS
Google Scholar
Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research. PLoS Comput Biol. 2013; 9:1003285.
Article
Google Scholar
Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, Goecks J, Backofen R, Nekrutenko A, Taylor J. Practical computational reproducibility in the life sciences. Cell Syst. 2018; 6:631–5.
Article
Google Scholar
Goodstadt L. Ruffus: A lightweight python library for computational pipelines. Bioinformatics. 2010; 26:2778–9.
Article
CAS
Google Scholar
Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2012; 28(19):2520–2.
Article
Google Scholar
Fonseca Na, Petryszak R, Marioni J. iRAP - an integrated RNA-seq Analysis Pipeline iRAP - an integrated RNA-seq Analysis Pipeline. 2014:0–10. https://doi.org/10.1101/005991.
Wang Y, Mehta G, Mayani R, Lu J, Souaiaia T, Chen Y, Clark A, Yoon HJ, Wan L, Evgrafov OV, Knowles JA, Deelman E, Chen T. RseqFlow: Workflows for RNA-Seq data analysis. Bioinformatics. 2011; 27(18):2598–600.
Article
CAS
Google Scholar
Kalari KR, Nair Aa, Bhavsar JD, O Brien DR, Davila JI, Bockol Ma, Nie J, Tang X, Baheti S, Doughty JB, Middha S, Sicotte H, Thompson AE, Asmann YW, Kocher J-Pa. MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing,. BMC Bioinformatics. 2014; 15(1):224.
Article
Google Scholar
Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11:86.
Article
Google Scholar
Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quiñones M, Hurt D, Fursov M, Huyen Y. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014; 2:644.
Article
Google Scholar
Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B. KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). New York: Springer: 2007.
Google Scholar
Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas MP, Sufi S, Goble C. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic acids research. 2013; 41(Web Server issue):557–61.
Article
Google Scholar
Guimera RV. bcbio-nextgen: Automated, distributed next-gen sequencing pipeline. EMBnet J. 2012; 17:30.
Article
Google Scholar
Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines,. Bioinformatics (Oxford Engl). 2012; 28(11):1525–6.
Article
CAS
Google Scholar
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017; 35:316–9.
Article
CAS
Google Scholar
Cingolani P, Sladek R, Blanchette M. BigDataScript: a scripting language for data pipelines. Bioinformatics. 2014; 31(1):10–16.
Article
Google Scholar
Ewels P, Krueger F, Käller M, Andrews S. Cluster flow: A user-friendly bioinformatics workflow tool. F1000Research. 2016; 5:2824.
Article
Google Scholar
Gafni E, Luquette LJ, Lancaster AK, Hawkins JB, Jung J-Y, Souilmi Y, Wall DP, Tonellato PJ. Cosmos: Python library for massively parallel workflows. Bioinformatics. 2014; 30:2956–8.
Article
CAS
Google Scholar
Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. Rabix: An open-source workflow executor supporting recomputability and interoperability of workflow descriptions. Pac Symp Biocomput. 2017; 22:154–65.
PubMed
Google Scholar
Yoo AB, Jette MA, Grondona M. SLURM: Simple Linux Utility for Resource Management In: Feitelson D, Rudolph L, Schwiegelshohn U, editors. Job Scheduling Strategies for Parallel Processing: 9th International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper. Berlin: Springer: 2003. p. 44–60.
Google Scholar
Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome,. Cell. 2007; 129(4):823–37.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform,. Bioinformatics (Oxford Engl). 2010; 26(5):589–95.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357–9.
Article
CAS
Google Scholar
Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermüller J. Fast mapping of short sequences with mismatches, insertions and deletions using index structures,. PLoS Comput Biol. 2009; 5(9):1000502.
Article
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions,. Genome Biol. 2013; 14(4):36.
Article
Google Scholar
Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt LM, Teupser D, Hackermüller J, Stadler PF. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection,. Genome Biol. 2014; 15(2):34.
Article
Google Scholar
Trapnell C, Williams Ba, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2011; 28(5):511–5.
Article
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31(2):166–9.
Article
CAS
Google Scholar
Zhang Y, Liu T, Meyer Ca, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9):137.
Article
Google Scholar
Fidler F, Gordon A. Science is in a reproducibility crisis – how do we resolve it?Conversation. 2013. Available at: http://theconversation.com/science-is-in-a-reproducibility-crisis-how-d%o-we-resolve-it-16998. Accessed 11 Jun 2019.
Lehrer J. The truth wears off. New Yorker. 2010; Dec 13:52–7.
Google Scholar
Van Bavel J. Why do so many studies fail to replicate?N Y Times. 2016; 10. Available at: https://www.nytimes.com/2016/05/29/opinion/sunday/why-do-so-many-studies-fail-to-replicate.html. Accessed 11 Jun 2019.
Fomel S, Claerbout JF. Guest Editors’ Introduction: Reproducible Research. Comput Sci Eng. 2009; 11(1):5–7.
Article
Google Scholar
Leisch F. Sweave: Dynamic generation of statistical reports using literate data analysis In: Härdle W, Rönz B, editors. Compstat 2002 — Proceedings in Computational Statistics. Heidelberg: Physica Verlag: 2002. p. 575–80. ISBN 3-7908-1517-9. http://www.stat.uni-muenchen.de/texttildelowleisch/Sweave.
Xie Y. Implementing Reproducible Computational Research In: Stodden V, Leisch F, Peng RD, editors. Boca Raton: Chapman and Hall/CRC: 2014. ISBN 978-1466561595. http://www.crcpress.com/product/isbn/9781466561595.
Pérez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007; 9(3):21–9.
Article
Google Scholar
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018; 46:537–44.
Article
Google Scholar