Lajoie BR, Dekker J, Kaplan N. The hitchhiker’s guide to hi-c analysis: practical guidelines. Methods. 2015; 72:65–75.
Article
CAS
PubMed
Google Scholar
Sarnataro S, Chiariello AM, Esposito A, Prisco A, Nicodemi M. Structure of the human chromosome interaction network. PloS ONE. 2017; 12(11):0188201.
Article
CAS
Google Scholar
Lin D, Bonora G, Yardımcı GG, Noble WS. Computational methods for analyzing and modeling genome structure and organization. Wiley Interdiscip Rev Syst Biol Med. 2019; 11(1):1435.
Article
CAS
Google Scholar
Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, Andrews S. Hicup: pipeline for mapping and processing hi-c data. F1000Research. 2015; 4:1310.
Article
PubMed
PubMed Central
CAS
Google Scholar
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA. Iterative correction of hi-c data reveals hallmarks of chromosome organization. Nat Methods. 2012; 9(10):999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castellano G, Le Dily F, Pulido AH, Beato M, Roma G. Hic-inspector: a toolkit for high-throughput chromosome capture data. bioRxiv. 2015. https://doi.org/10.1101/020636.
Hwang Y-C, Lin C-F, Valladares O, Malamon J, Kuksa PP, Zheng Q, Gregory BD, Wang L-S. Hippie: a high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics. 2014; 31(8):1290–2.
Article
PubMed
PubMed Central
Google Scholar
Schmid MW, Grob S, Grossniklaus U. Hicdat: a fast and easy-to-use hi-c data analysis tool. BMC Bioinformatics. 2015; 16(1):277.
Article
PubMed
PubMed Central
CAS
Google Scholar
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, Heard E, Dekker J, Barillot E. Hic-pro: an optimized and flexible pipeline for hi-c data processing. Genome Biol. 2015; 16(1):259.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sauria ME, Phillips-Cremins JE, Corces VG, Taylor J. Hifive: a tool suite for easy and efficient hic and 5c data analysis. Genome Biol. 2015; 16(1):237.
PubMed
PubMed Central
Google Scholar
Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for analyzing loop-resolution hi-c experiments. Cell Syst. 2016; 3(1):95–98.
CAS
PubMed
PubMed Central
Google Scholar
Lazaris C, Kelly S, Ntziachristos P, Aifantis I, Tsirigos A. Hic-bench: comprehensive and reproducible hi-c data analysis designed for parameter exploration and benchmarking. BMC Genomics. 2017; 18(1):22.
PubMed
PubMed Central
Google Scholar
Yang T, Zhang F, Yardımcı GG, Song F, Hardison RC, Noble WS, Yue F, Li Q. Hicrep: assessing the reproducibility of hi-c data using a stratum-adjusted correlation coefficient. Genome Res. 2017; 27(11):1939–49.
CAS
PubMed
PubMed Central
Google Scholar
Ursu O, Boley N, Taranova M, Wang YR, Yardimci GG, Stafford Noble W, Kundaje A. Genomedisco: A concordance score for chromosome conformation capture experiments using random walks on contact map graphs. Bioinformatics. 2018; 34(16):2701–7.
CAS
PubMed
PubMed Central
Google Scholar
Yan K-K, Yardımcı GG, Yan C, Noble WS, Gerstein M. Hic-spector: a matrix library for spectral and reproducibility analysis of hi-c contact maps. Bioinformatics. 2017; 33(14):2199–201.
CAS
PubMed
PubMed Central
Google Scholar
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289–93.
CAS
PubMed
PubMed Central
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485(7398):376.
CAS
PubMed
PubMed Central
Google Scholar
Filippova D, Patro R, Duggal G, Kingsford C. Identification of alternative topological domains in chromatin. Algoritm Mol Biol. 2014; 9(1):14.
Google Scholar
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665–80.
CAS
PubMed
PubMed Central
Google Scholar
Lévy-Leduc C, Delattre M, Mary-Huard T, Robin S. Two-dimensional segmentation for analyzing hi-c data. Bioinformatics. 2014; 30(17):386–92.
Google Scholar
Serra F, Baù D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic analysis and 3d-modelling of hi-c data using tadbit reveals structural features of the fly chromatin colors. PLoS Comput Biol. 2017; 13(7):1005665.
Google Scholar
Weinreb C, Raphael BJ. Identification of hierarchical chromatin domains. Bioinformatics. 2015; 32(11):1601–9.
PubMed
PubMed Central
Google Scholar
Shin H, Shi Y, Dai C, Tjong H, Gong K, Alber F, Zhou XJ. Topdom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 2015; 44(7):70.
Google Scholar
Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, Fu Z, Noma K. -i.Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. 2010; 38(22):8164–77.
CAS
PubMed
PubMed Central
Google Scholar
Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013; 503(7475):290.
CAS
PubMed
PubMed Central
Google Scholar
Ay F, Bailey TL, Noble WS. Statistical confidence estimation for hi-c data reveals regulatory chromatin contacts. Genome Res. 2014; 24(6):999–1011.
CAS
PubMed
PubMed Central
Google Scholar
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast genome. Nature. 2010; 465(7296):363.
CAS
PubMed
PubMed Central
Google Scholar
Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert J-P, Noble WS, Le Roch KG. Three-dimensional modeling of the p. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 2014; 24(6):974–88.
CAS
PubMed
PubMed Central
Google Scholar
Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring the 3d structure of the genome. Bioinformatics. 2014; 30(12):26–33.
Google Scholar
Zhang Z, Li G, Toh K-C, Sung W-K. 3d chromosome modeling with semi-definite programming and hi-c data. J Comput Biol. 2013; 20(11):831–46.
Article
CAS
PubMed
Google Scholar
Ben-Elazar S, Yakhini Z, Yanai I. Spatial localization of co-regulated genes exceeds genomic gene clustering in the saccharomyces cerevisiae genome. Nucleic Acids Res. 2013; 41(4):2191–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol. 2011; 18(1):107.
Article
PubMed
CAS
Google Scholar
Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3d genome reconstruction from chromosomal contacts. Nat Methods. 2014; 11(11):1141.
Article
CAS
PubMed
Google Scholar
Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M. Three-dimensional modeling of chromatin structure from interaction frequency data using markov chain monte carlo sampling. BMC Bioinformatics. 2011; 12(1):414.
Article
PubMed
PubMed Central
Google Scholar
Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell. 2014; 157(4):950–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, Ren B, Liu JS. Bayesian inference of spatial organizations of chromosomes. PLoS Comput Biol. 2013; 9(1):1002893.
Article
CAS
Google Scholar
Wang S, Xu J, Zeng J. Inferential modeling of 3d chromatin structure. Nucleic Acids Res. 2015; 43(8):54–54.
Article
CAS
Google Scholar
Peng C, Fu L-Y, Dong P-F, Deng Z-L, Li J-X, Wang X-T, Zhang H-Y. The sequencing bias relaxed characteristics of hi-c derived data and implications for chromatin 3d modeling. Nucleic Acids Res. 2013; 41(19):183.
Article
CAS
Google Scholar
Trieu T, Cheng J. Large-scale reconstruction of 3d structures of human chromosomes from chromosomal contact data. Nucleic Acids Res. 2014; 42(7):52.
Article
CAS
Google Scholar
Lun AT, Smyth GK. diffhic: a bioconductor package to detect differential genomic interactions in hi-c data. BMC Bioinformatics. 2015; 16(1):258.
PubMed
PubMed Central
Google Scholar
Liu L, Ruan J. Utilizing networks for differential analysis of chromatin interactions. J Bioinforma Comput Biol. 2017; 15(06):1740008.
CAS
Google Scholar
Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF, Wang T. Exploring long-range genome interactions using the washu epigenome browser. Nat Methods. 2013; 10(5):375.
CAS
PubMed
Google Scholar
Paulsen J, Sandve GK, Gundersen S, Lien TG, Trengereid K, Hovig E. Hibrowse: multi-purpose statistical analysis of genome-wide chromatin 3d organization. Bioinformatics. 2014; 30(11):1620–2.
CAS
PubMed
PubMed Central
Google Scholar
Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. Juicebox provides a visualization system for hi-c contact maps with unlimited zoom. Cell Syst. 2016; 3(1):99–101.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MN, Li Y, Hu M, et al. The 3d genome browser: a web-based browser for visualizing 3d genome organization and long-range chromatin interactions. Genome Biol. 2018; 19(1):151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A. Omictools: an informative directory for multi-omic data analysis. Database. 2014; 2014:069.
Article
CAS
Google Scholar
Xiong K, Ma J. Revealing hi-c subcompartments by imputing inter-chromosomal chromatin interactions. Nat Commun. 2019; 10(1):5069.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai Y, Li C, Pei G, Dong X, Ding G, Zhao Z, Li Y, Jia P. Multiple transcription factors contribute to inter-chromosomal interaction in yeast. BMC Syst Biol. 2018; 12(8):140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell hi-c reveals cell-to-cell variability in chromosome structure. Nature. 2013; 502(7469):59.
Article
CAS
PubMed
Google Scholar
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K. Single-nucleus hi-c reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 2017; 544(7648):110.
CAS
PubMed
PubMed Central
Google Scholar
Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble WS, Duan Z, Shendure J. Massively multiplex single-cell hi-c. Nat Methods. 2017; 14(3):263.
CAS
PubMed
PubMed Central
Google Scholar
Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Min Knowl Disc. 2007; 15(1):55–86.
Google Scholar
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A, et al. 3d structures of individual mammalian genomes studied by single-cell hi-c. Nature. 2017; 544(7648):59.
CAS
PubMed
PubMed Central
Google Scholar
Kruse K, Sewitz S, Babu MM. A complex network framework for unbiased statistical analyses of dna–dna contact maps. Nucleic Acids Res. 2012; 41(2):701–10.
PubMed
PubMed Central
Google Scholar
Kaufmann S, Fuchs C, Gonik M, Khrameeva EE, Mironov AA, Frishman D. Inter-chromosomal contact networks provide insights into mammalian chromatin organization. PloS ONE. 2015; 10(5):0126125.
Google Scholar
Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, Cohen NM, Wingett S, Fraser P, Tanay A. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017; 547(7661):61.
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Lin D, Yardımcı GG, Noble WS. Unsupervised embedding of single-cell hi-c data. Bioinformatics. 2018; 34(13):96–104.
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009; 19(9):1639–45.
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012; 488(7409):116.
CAS
PubMed
PubMed Central
Google Scholar