Prasad V, Fojo T, Brada M. Precision oncology: origins, optimism, and potential. Lancet Oncol. 2016;17(2):e81–6.
Article
PubMed
Google Scholar
Ayers M, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol. 2004;22(12):2284–93.
Article
CAS
PubMed
Google Scholar
Barretina J, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol. 2006;2(12):689.
Article
CAS
PubMed
Google Scholar
Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells. 1998;16(6):413–28.
Article
CAS
PubMed
Google Scholar
Tu S-M, Bilen MA, Tannir NM. Personalised cancer care: promises and challenges of targeted therapy. J R Soc Med. 2016;109(3):98–105.
Article
PubMed
PubMed Central
Google Scholar
Barretina J, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang Y, et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018;8(1):8857.
Article
PubMed
PubMed Central
Google Scholar
Chiu Y-C, et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genet. 2019;12(1):18.
Google Scholar
Costello JC, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32:1202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47.
Article
PubMed
PubMed Central
Google Scholar
Guan N-N, et al. Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol Therapy-Nucleic Acids. 2019;17:164–74.
Article
CAS
Google Scholar
Hejase H, Chan C. Improving drug sensitivity prediction using different types of data. CPT Pharmacometrics Syst Pharmacol. 2015;4(2):98–105.
Article
Google Scholar
Huang C, et al. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS One. 2017;12(10):e0186906.
Article
PubMed
PubMed Central
Google Scholar
Liu H, et al. Anti-cancer drug response prediction using neighbor-based collaborative filtering with global effect removal. Mol Therapy-Nucleic Acids. 2018;13:303–11.
Article
CAS
Google Scholar
Suphavilai C, Bertrand D, Nagarajan N. Predicting cancer drug response using a recommender system. Bioinformatics. 2018;34(22):3907–14.
Article
CAS
PubMed
Google Scholar
Wei D, et al. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model. BMC Bioinformatics. 2019;20(1):44.
Article
PubMed
PubMed Central
Google Scholar
Yang J, et al. A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics. 2019;35(9):1527–35.
Article
CAS
PubMed
Google Scholar
Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2016;18(5):820–9.
PubMed Central
Google Scholar
Vidyasagar M. Identifying predictive features in drug response using machine learning: opportunities and challenges. Annu Rev Pharmacol Toxicol. 2015;55:15–34.
Article
CAS
PubMed
Google Scholar
Sekula MN. OptCluster: an R package for determining the optimal clustering algorithm and optimal number of clusters; 2015.
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18–22.
Google Scholar
Cutler A, Cutler DR, Stevens JR. Random Forests. In C. Zhang & Y. Ma (Eds.). Ensemble machine learning: methods and applications. Boston: Springer US; 2012. p. 157–75.
Weinstein JN, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113.
Article
PubMed
PubMed Central
Google Scholar
Mi H, et al. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551.
Article
PubMed
PubMed Central
Google Scholar
Hoadley KA, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291–304. e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, et al. Inferring pathway activity toward precise disease classification. PLoS Comput Biol. 2008;4(11):e1000217.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Schwarz E. BioMM: biologically-informed multi-stage machine learning for identification of epigenetic fingerprintsarXiv preprint arXiv; 2017. p. 1712.00336.
Google Scholar
Fong RC, Scheirer WJ, Cox DD. Using human brain activity to guide machine learning. Sci Rep. 2018;8(1):5397.
Article
PubMed
PubMed Central
Google Scholar
O'Reilly RC. Six principles for biologically based computational models of cortical cognition. Trends Cogn Sci. 1998;2(11):455–62.
Article
CAS
PubMed
Google Scholar
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol. 2019;21(2):122–32. https://doi.org/10.1038/s41556-018-0223-z.
Seguin L, et al. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75.
Article
PubMed
PubMed Central
Google Scholar
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Experimental Med. 2015;5(2):84.
Article
Google Scholar
Turner MD, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA) - Mol Cell Res. 2014;1843(11):2563–82.
Article
CAS
Google Scholar
Hutson M. Artificial intelligence faces reproducibility crisis. In: American Association for the Advancement of Science; 2018.
Google Scholar
Banfield J, Raftery A. Model-based gaussian and non-gaussian clustering. Biometrics. 1993;49(3):803–21. https://doi.org/10.2307/2532201.
Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967;32(3):241–54.
Article
CAS
PubMed
Google Scholar
Lloyd, S., Least square quantization in PCM. Bell telephone laboratories paper. Published in journal much later: Lloyd, SP: Least squares quantization in PCM. IEEE trans. Inform. Theor. (1957/1982) Google Scholar, 1957.
Rousseeuw PJ, Kaufman L. Finding groups in data. Ser Probability Mathematical Stat 1990. 1990;34(1):111–2.
Google Scholar
Tamayo P, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci. 1999;96(6):2907–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, et al. Weighted Gini index feature selection method for imbalanced data. In: 2018 IEEE 15th international conference on networking, sensing and control (ICNSC); 2018.
Google Scholar