Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther. 2013;138(3):333–408.

Article
CAS
PubMed
PubMed Central
Google Scholar

Loscalzo J, Barabasi A-L. Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med. 2011;3(6):619–27.

Article
PubMed
PubMed Central
Google Scholar

Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191.

Article
CAS
PubMed
Google Scholar

Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711.

Article
CAS
PubMed
Google Scholar

Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203.

Article
CAS
PubMed
Google Scholar

Gov, U. FDA drug developement process. 2019. https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process. Accessed on 10/31/2019.

Gov, U. FDA drug developement process. 2019. https://www.fda.gov/drugs/drug-information-consumers/fdas-drug-review-process-ensuring-drugs-are-safe-and-effective. Accessed on 10/31/2019.

Gov, U. FDA drug developement process. 2019. https://www.fda.gov/drugs/development-approval-process-drugs. Accessed on 10/31/2019.

Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zhou L, Li Z, Yang J, Tian G, Liu F, Wen H, Peng L, Chen M, Xiang J, Peng L. Revealing drug–target interactions with computational models and algorithms. Molecules. 2019;24(9):1714.

Article
CAS
PubMed Central
Google Scholar

Leicht EA, Holme P, Newman ME. Vertex similarity in networks. Phys Rev E. 2006;73(2):026120.

Article
CAS
Google Scholar

Žitnik M, Zupan B. Data imputation in epistatic maps by network-guided matrix completion. J Comput Biol. 2015;22(6):595–608.

Article
PubMed
PubMed Central
CAS
Google Scholar

Wang P, Xu B, Wu Y, Zhou X. Link prediction in social networks: the state-of-the-art. Sci China Inf Sci. 2015;58(1):1–38.

Google Scholar

You J, McLeod RD, Hu P. Predicting drug–target interaction network using deep learning model. Comput Biol Chem. 2019;80:90–101.

Article
CAS
PubMed
Google Scholar

Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673.

Article
CAS
PubMed
Google Scholar

Wang S-M, Lee H-K, Kweon Y-S, Lee CT, Lee K-U. Overactive bladder successfully treated with duloxetine in a female adolescent. Clin Psychopharmacol Neurosci. 2015;13(2):212.

Article
PubMed
PubMed Central
Google Scholar

Pech R, Hao D, Po M, Zhou T. Predicting drug-target interactions via sparse learning. Google Scholar. 2017.

Fokoue A, Sadoghi M, Hassanzadeh O, Zhang P. Predicting drug–drug interactions through large-scale similarity-based link prediction. In: European semantic web conference. Springer; 2016. p. 774–89.

Chen X, Liu M-X, Yan G-Y. Drug–target interaction prediction by random walk on the heterogeneous network. Mol BioSyst. 2012;8(7):1970–8.

Article
CAS
PubMed
Google Scholar

Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y. Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503.

Article
CAS
PubMed
PubMed Central
Google Scholar

Huang H, Zhang P, Qu XA, Sanseau P, Yang L. Systematic prediction of drug combinations based on clinical side-effects. Sci Rep. 2014;4:7160.

Article
CAS
PubMed
PubMed Central
Google Scholar

Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321(5886):263–6.

Article
CAS
PubMed
Google Scholar

Yang K, Bai H, Ouyang Q, Lai L, Tang C. Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol. 2008;4(1):228.

Article
PubMed
PubMed Central
CAS
Google Scholar

Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J. A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun. 2017;8(1):1–13.

Article
CAS
Google Scholar

Fu G, Ding Y, Seal A, Chen B, Sun Y, Bolton E. Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinform. 2016;17(1):160.

Article
CAS
Google Scholar

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP. Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems. 2015. p. 2224–32.

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol. 70. 2017. p. 1263–72. JMLR. org.

You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. In: Advances in neural information processing systems. 2018. p. 6410–21.

De Cao N, Kipf T. Molgan: an implicit generative model for small molecular graphs. 2018. arXiv preprint arXiv:1805.11973.

Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF. Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model. 2017;57(8):1757–72.

Article
CAS
PubMed
Google Scholar

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016;30(8):595–608.

Article
CAS
PubMed
PubMed Central
Google Scholar

Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120(14):145301.

Article
CAS
PubMed
Google Scholar

Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D. Distance metric learning using graph convolutional networks: application to functional brain networks. In: International conference on medical image computing and computer-assisted intervention. Springer; 2017. p. 469–77.

Parisot S, Ktena SI, Ferrante E, Lee M, Moreno RG, Glocker B, Rueckert D. Spectral graph convolutions for population-based disease prediction. In: International conference on medical image computing and computer-assisted intervention. Springer; 2017. p. 177–85.

Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117–30.

Article
PubMed
Google Scholar

Assouel R, Ahmed M, Segler MH, Saffari A, Bengio Y. Defactor: differentiable edge factorization-based probabilistic graph generation. 2018. arXiv preprint arXiv:1811.09766.

Vidović D, Koleti A, Schürer SC. Large-scale integration of small molecule-induced genome-wide transcriptional responses, kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front Genet. 2014;5:342.

PubMed
PubMed Central
Google Scholar

Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014;141(2):157–65.

Article
CAS
PubMed
PubMed Central
Google Scholar

Bisgin H, Liu Z, Fang H, Kelly R, Xu X, Tong W. A phenome-guided drug repositioning through a latent variable model. BMC Bioinform. 2014;15(1):267.

Article
CAS
Google Scholar

Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6(1):343.

Article
PubMed
PubMed Central
Google Scholar

Hoehndorf R, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV. Linking pharmgkb to phenotype studies and animal models of disease for drug repurposing. In: Biocomputing 2012. World Scientific; 2012. p. 388–99.

Swamidass SJ. Mining small-molecule screens to repurpose drugs. Brief Bioinform. 2011;12(4):327–35.

Article
CAS
PubMed
Google Scholar

Tan F, Yang R, Xu X, Chen X, Wang Y, Ma H, Liu X, Wu X, Chen Y, Liu L, et al. Drug repositioning by applying ‘expression profiles’ generated by integrating chemical structure similarity and gene semantic similarity. Mol BioSyst. 2014;10(5):1126–38.

Article
CAS
PubMed
Google Scholar

Ng C, Hauptman R, Zhang Y, Bourne PE, Xie L. Anti-infectious drug repurposing using an integrated chemical genomics and structural systems biology approach. In: Biocomputing 2014. World Scientific; 2014. p. 136–47.

Webster RM. Combination therapies in oncology. Nat Rev Drug Discov. 2016;15(2):81.

Article
CAS
PubMed
Google Scholar

Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short Iii GF, Staunton JE, Jin X, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27(7):659–66.

Article
PubMed
PubMed Central
CAS
Google Scholar

Flockhart D, Honig P, Yasuda S, Rosebraugh C. Preventable adverse drug reactions: a focus on drug interactions. Centers for Education and Research on Therapeutics; 2009. p. 452.

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34(13):457–66.

Article
CAS
Google Scholar

Li J, Lu Z. A new method for computational drug repositioning using drug pairwise similarity. In: 2012 IEEE international conference on bioinformatics and biomedicine, 2012. IEEE. p. 1–4.

Li J, Lu Z. Pathway-based drug repositioning using causal inference. BMC Bioinform. 2013;14(16):3.

Article
Google Scholar

Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol. 2013;7(5):6.

Article
Google Scholar

Jin G, Fu C, Zhao H, Cui K, Chang J, Wong ST. A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res. 2012;72(1):33–44.

Article
CAS
PubMed
Google Scholar

Godsil C, Royle GF. Algebraic graph theory, vol. 207. Springer; 2013.

Lu Y. Link prediction in drug-target interactions network using similarity indices. PhD thesis, University of Cambridge; 2015.

Newman ME. Clustering and preferential attachment in growing networks. Phys Rev E. 2001;64(2):025102.

Article
CAS
Google Scholar

Chowdhury GG. Introduction to modern information retrieval. Facet Publishing; 2010.

Jaccard P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat. 1901;37:547–79.

Google Scholar

Sorensen TA. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skar. 1948;5:1–34.

Google Scholar

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L. Hierarchical organization of modularity in metabolic networks. Science. 2002;297(5586):1551–5.

Article
CAS
PubMed
Google Scholar

Lü L, Zhou T. Link prediction in complex networks: a survey. Phys A. 2011;390(6):1150–70.

Article
Google Scholar

Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–12.

Article
PubMed
Google Scholar

Adamic LA, Adar E. Friends and neighbors on the web. Soc Netw. 2003;25(3):211–30.

Article
Google Scholar

Zhou T, Lü L, Zhang Y-C. Predicting missing links via local information. Eur Phys J B. 2009;71(4):623–30.

Article
CAS
Google Scholar

Lü L, Jin C-H, Zhou T. Similarity index based on local paths for link prediction of complex networks. Phys Rev E. 2009;80(4):046122.

Article
CAS
Google Scholar

Al Hasan M, Zaki MJ. A survey of link prediction in social networks. In: Social network data analytics. Springer; 2011. p. 243–75.

Katz L. A new status index derived from sociometric analysis. Psychometrika. 1953;18(1):39–43.

Article
Google Scholar

Klein DJ, Randić M. Resistance distance. J Math Chem. 1993;12(1):81–95.

Article
Google Scholar

Fouss F, Pirotte A, Renders J-M, Saerens M. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng. 2007;19(3):355–69.

Article
Google Scholar

Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst. 1998;30(1–7):107–17.

Article
Google Scholar

Liu W, Lü L. Link prediction based on local random walk. EPL (Europhys Lett). 2010;89(5):58007.

Article
CAS
Google Scholar

Jeh G, Widom J. Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2002. p. 538–43.

Sun D, Zhou T, Liu J-G, Liu R-R, Jia C-X, Wang B-H. Information filtering based on transferring similarity. Phys Rev E. 2009;80(1):017101.

Article
CAS
Google Scholar

Liu Z, Zhang Q-M, Lü L, Zhou T. Link prediction in complex networks: a local naïve bayes model. EPL (Europhys Lett). 2011;96(4):48007.

Article
CAS
Google Scholar

Chebotarev P, Shamis E. The matrix-forest theorem and measuring relations in small social groups. 2006. arXiv preprint arXiv:math/0602070.

Zhang J, Dong Y, Wang Y, Tang J, Ding M. Prone: fast and scalable network representation learning. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19. International joint conferences on artificial intelligence organization 2019. p. 4278–84. https://doi.org/10.24963/ijcai.2019/594.

Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2014. p. 701–710.

Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2016. p. 855–864.

Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013. arXiv preprint arXiv:1301.3781.

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on World Wide Web. International World Wide Web Conferences Steering Committee; 2015. p. 1067–77.

Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In: Proceedings of the eleventh ACM international conference on web search and data mining. ACM; 2018. p. 459–67.

Tang J, Qu M, Mei Q. Pte: Predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2015. p. 1165–74.

Ou M, Cui P, Pei J, Zhang Z, Zhu W. Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2016. p. 1105–14.

Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM international on conference on information and knowledge management. ACM; 2015. p. 891–900.

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45(D1):972–8.

Article
CAS
Google Scholar

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res. 2017;46(D1):1074–82.

Article
CAS
Google Scholar

Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J, Urdiales EG, Gewiess A, Jensen LJ, et al. Supertarget and matador: resources for exploring drug–target relationships. Nucleic Acids Res. 2007;36(suppl–1):919–22.

Article
CAS
Google Scholar

Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.

Article
Google Scholar