Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):1–12.
Article
Google Scholar
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599–604.
Article
CAS
PubMed
Google Scholar
Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell snapshots. Proc Natl Acad Sci. 2018;115(10):2467–76.
Article
Google Scholar
Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54.
Article
CAS
PubMed
Google Scholar
Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan G-C. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci. 2014;111(52):5643–50.
Article
Google Scholar
Teschendorff AE, Enver T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun. 2017;8(1):1–15.
Article
Google Scholar
Jin S, MacLean AL, Peng T, Nie Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics. 2018;34(12):2077–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo J, Zheng J. HopLand: single-cell pseudotime recovery using continuous hopfield network-based modeling of Waddington’s epigenetic landscape. Bioinformatics. 2017;33(14):102–9.
Article
Google Scholar
Zwiessele M, Lawrence ND. Topslam: Waddington landscape recovery for single cell experiments. BioRxiv. 2016;057778.
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381.
Article
CAS
PubMed
PubMed Central
Google Scholar
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.
Article
PubMed
PubMed Central
Google Scholar
Gorini L, Maas WK. The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim Biophys Acta. 1957;25(1):208.
Article
CAS
PubMed
Google Scholar
Zeisel A, Köstler WJ, Molotski N, Tsai JM, Krauthgamer R, Jacob-Hirsch J, Rechavi G, Soen Y, Jung S, Yarden Y, et al. Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol Syst Biol. 2011;7(1):529.
Article
PubMed
PubMed Central
Google Scholar
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14.
Article
CAS
PubMed
Google Scholar
Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S. Social lstm: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 961–71.
Felsen P, Lucey P, Ganguly S. Where will they go? Predicting fine-grained adversarial multi-agent motion using conditional variational autoencoders. In: Proceedings of the European conference on computer vision (ECCV); 2018. p. 732–47.
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018;15(12):1053–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grønbech CH, Vording MF, Timshel PN, Sønderby CK, Pers TH, Winther O. scVAE: variational auto-encoders for single-cell gene expression datas. BioRxiv; 2018:318295.
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019;10(1):1–14.
Article
Google Scholar
He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE; 2008. p. 1322–28.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.
Article
Google Scholar
Han H, Wang W-Y, Mao B-H. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on intelligent computing. Springer; 2005. p. 878–887.
Nguyen HM, Cooper EW, Kamei K. Borderline over-sampling for imbalanced data classification. Int J Knowl Eng Soft Data Paradigms. 2011;3(1):4–21.
Article
Google Scholar
Yuwono M, Su SW, Moulton B, Nguyen H. Fast unsupervised learning method for rapid estimation of cluster centroids. In: 2012 IEEE congress on evolutionary computation. IEEE; 2012. p. 1–8 .
Mani I, Zhang I. kNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of workshop on learning from imbalanced datasets. vol 126; 2003.
Tomek I, et al. An experiment with the edited nearest-nieghbor rule; 1976.
Laurikkala J. Improving identification of difficult small classes by balancing class distribution. In: Conference on artificial intelligence in medicine in Europe. Springer; 2001, p. 63–6.
Kubat M, Matwin S, et al. Addressing the curse of imbalanced training sets: one-sided selection. In: Icml, vol. x97; 1997. p. 179–86. Citeseer
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor Newsl. 2004;6(1):20–9.
Article
Google Scholar
Batista GE, Bazzan AL, Monard MC. Balancing training data for automated annotation of keywords: a case study. In: WOB; 2003. p. 10–18.
Mlxtend Raschka S. providing machine learning and data science utilities and extensions to python’s scientific computing stack. J Open Source Softw. 2018;3(24):638 (https://doi.org/10.21105/joss.00638).
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Hochgerner H, Zeisel A, Lönnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nature Neurosci. 2018;21(2):290–9.
Article
CAS
PubMed
Google Scholar
Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C, Schirge S, Burtscher I, Böttcher A, Theis FJ, et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development. 2019;146(12):dev173849.
Article
CAS
PubMed
Google Scholar