McFarland LV. Beneficial microbes: health or hazard? Eur J Gastroenterol Hepatol. 2000;12(10):1069–71.
Article
CAS
PubMed
Google Scholar
Minakshi R, Padhan K, Rehman S, Hassan MI, Ahmad F. The SARS coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res. 2014;191:180–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moni MA, Liò P. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies. BMC Bioinform. 2014;15(1):333.
Article
Google Scholar
Authority, E.F.S., for Disease Prevention, E.C., Control, for Avian influenza, E.U.R.L., Brown, I., Mulatti, P., Smietanka, K., Staubach, C., Willeberg, P., Adlhoch, C., Candiani, D., et al.: Avian influenza overview october 2016–august 2017. EFSA Journal 2017;15(10):05018
Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.
Article
PubMed
CAS
Google Scholar
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: the gut-brain axis. Clinics Pract. 2017;7(4):131–6.
Article
Google Scholar
Tran N, Zhebrak M, Yacoub C, Pelletier J, Hawley D. The gut-brain relationship: investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J Affect Disord. 2019;252:271–7.
Article
PubMed
Google Scholar
Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220–7.
Article
PubMed
Google Scholar
Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, Matteson EL, Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8(1):1–14.
Article
Google Scholar
Ma W, Zhang L, Zeng P, Huang C, Li J, Geng B, Yang J, Kong W, Zhou X, Cui Q. An analysis of human microbe-disease associations. Brief Bioinform. 2017;18(1):85–97.
Article
PubMed
Google Scholar
Chen X, Huang Y-A, You Z-H, Yan G-Y, Wang X-S. A novel approach based on Katz measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics. 2017;33(5):733–9.
CAS
PubMed
Google Scholar
Bao W, Jiang Z, Huang D-S. Novel human microbe-disease association prediction using network consistency projection. BMC Bioinform. 2017;18(16):543.
Article
CAS
Google Scholar
Qu J, Zhao Y, Yin J. Identification and analysis of human microbe-disease associations by matrix decomposition and label propagation. Front Microbiol. 2019;10:291.
Article
PubMed
PubMed Central
Google Scholar
Peng L, Shen L, Liao L, Liu G, Zhou L. RNMFMDA: a microbe-disease association identification method based on reliable negative sample selection and logistic matrix factorization with neighborhood regularization. Front Microbiol. 2020;11:592430.
Article
PubMed
PubMed Central
Google Scholar
Yao G, Zhang W, Yang M, Yang H, Wang J, Zhang H, Wei L, Xie Z, Li W. Microphenodb associates metagenomic data with pathogenic microbes, microbial core genes, and human disease phenotypes. Genom Proteom Bioinform. 2021;18(6):760–72.
Article
Google Scholar
Park Y, Lee J, Moon H, Choi YS, Rho M. Discovering microbe-disease associations from the literature using a hierarchical long short-term memory network and an ensemble parser model. Sci Rep. 2021;11(1):1–12.
Article
CAS
Google Scholar
Leaman R, Islamaj Doğan R, Lu Z. DNorm: disease name normalization with pairwise learning to rank. Bioinformatics. 2013;29(22):2909–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe L, Wilbur WJ. Tagging gene and protein names in biomedical text. Bioinformatics. 2002;18(8):1124–32.
Article
CAS
PubMed
Google Scholar
Yeh A, Morgan A, Colosimo M, Hirschman L. Biocreative task 1a: gene mention finding evaluation. BMC Bioinform. 2005;6(S1):2.
Article
CAS
Google Scholar
Gerner M, Nenadic G, Bergman CM. Linnaeus: a species name identification system for biomedical literature. BMC Bioinform. 2010;11(1):85.
Article
CAS
Google Scholar
Dang TH, Le H-Q, Nguyen TM, Vu ST. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics. 2018;34(20):3539–46.
Article
CAS
PubMed
Google Scholar
Zhou D, Zhong D, He Y. Biomedical relation extraction: from binary to complex. Comput Math Methods Med. 2014;2014.
Semwal T, Yenigalla P, Mathur G, Nair SB. A practitioners’ guide to transfer learning for text classification using convolutional neural networks. In: Proceedings of the 2018 SIAM international conference on data mining (2018). SIAM, pp 513–521; 2018.
Giorgi JM, Bader GD. Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics. 2018;34(23):4087–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, Daníelsdóttir AD, Krecke M, Merten D, Haraldsdóttir HS, et al. The virtual metabolic human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 2019;47(D1):614–24.
Article
CAS
Google Scholar
Janssens Y, Nielandt J, Bronselaer A, Debunne N, Verbeke F, Wynendaele E, Van Immerseel F, Vandewynckel Y-P, De Tré G, De Spiegeleer B. Disbiome database: linking the microbiome to disease. BMC Microbiol. 2018;18(1):1–6.
Article
Google Scholar
Song M, Kim WC, Lee D, Heo GE, Kang KY. PKDE4J: Entity and relation extraction for public knowledge discovery. J Biomed Inform. 2015;57:320–32.
Article
PubMed
Google Scholar
Hong L, Lin J, Li S, Wan F, Yang H, Jiang T, Zhao D, Zeng J. A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories. Nat Mach Intell. 2020;2:1–9.
Article
Google Scholar
Ramarao N, Tran S-L, Marin M, Vidic J. Advanced methods for detection of bacillus cereus and its pathogenic factors. Sensors. 2020;20(9):2667.
Article
CAS
PubMed Central
Google Scholar
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus group: Bacillus species with pathogenic potential. Gram-Positive Pathog. 2019;7:875–902.
Article
Google Scholar
Ehling-Schulz M, Frenzel E, Gohar M. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol. 2015;6:704.
Article
PubMed
PubMed Central
Google Scholar
Stevens MP, Elam K, Bearman G. Meningitis due to bacillus cereus: a case report and review of the literature. Can J Infect Dis Med Microbiol. 2012;23(1):16–9.
Article
Google Scholar
Orrett F. Fatal Bacillus cereus bacteremia in a patient with diabetes. J Natl Med Assoc. 2000;92(4):206.
CAS
PubMed
PubMed Central
Google Scholar
Mohammadi G, Adorian TJ, Rafiee G. Beneficial effects of bacillus subtilis on water quality, growth, immune responses, endotoxemia and protection against lipopolysaccharide-induced damages in oreochromis niloticus under biofloc technology system. Aquacult Nutr. 2020;26(5):1476–92.
Article
CAS
Google Scholar
Hendler R, Zhang Y. Probiotics in the treatment of colorectal cancer. Medicines. 2018;5(3):101.
Article
CAS
PubMed Central
Google Scholar
Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol. 2013;21(10):506–8.
Article
CAS
PubMed
Google Scholar
Parisa A, Roya G, Mahdi R, Shabnam R, Maryam E, Malihe T. Anti-cancer effects of bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PLoS ONE. 2020;15(5):0232930.
Article
CAS
Google Scholar
Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalerba P, Wang TC, Han YW. Fusobacterium nucleatum promotes colorectal cancer by inducing wnt/β-catenin modulator annexin a1. EMBO Rep. 2019;20(4):47638.
Article
CAS
Google Scholar
Abed J, Maalouf N, Manson AL, Earl AM, Parhi L, Emgård JE, Klutstein M, Tayeb S, Almogy G, Atlan KA, et al. Colon cancer-associated fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front Cell Infect Microbiol. 2020;10:400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.
Article
PubMed
Google Scholar
Moore W, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 1995;61(9):3202–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms. 2020;8(4):573.
Article
CAS
PubMed Central
Google Scholar
Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas M. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutrients. 2020;12(3):625.
Article
CAS
PubMed Central
Google Scholar
Bolourian A, Mojtahedi Z. Streptomyces, shared microbiome member of soil and gut, as ‘old friends’ against colon cancer. FEMS Microbiol Ecol. 2018;94(8):120.
Article
CAS
Google Scholar
Boleij A, Schaeps RM, Tjalsma H. Association between Streptococcus bovis and colon cancer. J Clin Microbiol. 2009;47(2):516.
Article
PubMed
PubMed Central
Google Scholar