Marcel S, Ramon MMJ, Panagiota M, Wittbrodt B, Wittbrodt J. A global survey identifies novel upstream components of the Ath5 neurogenic network. Genome Biol. 2009;10(9):R92.
Article
CAS
Google Scholar
Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA. Comparative developmental transcriptomics reveals rewiring of a highly conserved gene regulatory network during a major life history switch in the sea urchin genus heliocidaris. PLoS Biol. 2016;14(3):e1002391.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taou NS, Corne DW, Lones MA. Investigating the use of boolean networks for the control of gene regulatory networks. J Comput Sci. 2018;26:147–56.
Article
Google Scholar
Jin ZC, Cheng WU, Gao QB, Jiang Y. Gene regulatory network models based on time series gene expression data: recent progress. Acad J Second Mil Univ. 2008;28(9):1106–9.
Article
Google Scholar
Wu H, Lu T, Xue H, Liang H. Sparse additive ordinary differential equations for dynamic gene regulatory network modeling. J Am Stat Assoc. 2014;109(506):700–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortizgutiérrez E, Garcíacruz K, Azpeitia E, Castillo A, de la Paz Sánchez M, Álvarez-Buylla ER. A dynamic gene regulatory network model that recovers the cyclic behavior of arabidopsis thaliana cell cycle. PLoS Comput Biol. 2015;11(9):e1004486.
Article
CAS
Google Scholar
Zheng CH, Huang DS, Zhang L, Kong XZ. Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Trans Inf Technol Biomed. 2009;13(4):599–607.
Article
PubMed
Google Scholar
Modrák M, Vohradský J. Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data. BMC Bioinform. 2018;19(1):137.
Article
CAS
Google Scholar
Thomas T. Approximate inference of gene regulatory network models from RNA-Seq time series data. BMC Bioinform. 2018;19:127.
Article
Google Scholar
Thomas R, Mehrotra S, Papoutsakis ET, Hatzimanikatis V. A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics. 2004;20(17):3221–35.
Article
CAS
PubMed
Google Scholar
Huang DS, Yu HJ. Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(2):457–67.
Article
PubMed
Google Scholar
Zheng CH, Zhang L, Ng VT, Shiu SC, Huang DS. Molecular pattern discovery based on penalized matrix decomposition. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(6):1592–603.
Article
PubMed
Google Scholar
Huang DS, Zheng CH. Independent component analysis based penalized discriminant method for tumor classification using gene expression data. Bioinformatics. 2006;22(15):1855–62.
Article
CAS
PubMed
Google Scholar
Zhu L, You ZH, Huang DS, Wang B. t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE. 2013;8(4):e58368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DS, Zhang L, Han K, Deng S, Yang K, Zhang H. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression. Curr Protein Pept Sci. 2014;15(6):553–60.
Article
CAS
PubMed
Google Scholar
Bao WZ, Huang ZH, Yuan CA, Huang DS. Pupylation sites prediction with ensemble classification model. Int J Data Mining and Bioinformatics. 2017;18(2):91–104.
Article
Google Scholar
Bao W, Wang D, Chen Y. Classification of protein structure classes on flexible neutral tree. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(5):1122–33.
Article
CAS
PubMed
Google Scholar
Pietro Z, Sandro M, Michele C. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 2010;11:154.
Article
CAS
Google Scholar
Liu Z, He Q. A novel boolean network for analyzing the p53 gene regulatory network. Curr Bioinform. 2016;11(1):13–21.
Article
CAS
Google Scholar
Njah H, Jamoussi S. Weighted ensemble learning of Bayesian network for gene regulatory networks. Neurocomputing. 2015;150:404–16.
Article
Google Scholar
Xing L, Guo M, Liu X, Wang C, Zhang L. Gene regulatory networks reconstruction using the flooding-pruning hill-climbing algorithm. Genes. 2018;9(7):342.
Article
PubMed Central
CAS
Google Scholar
Tao L, Min W. Investigate data dependency for dynamic gene regulatory network identification through high-dimensional differential equation approach. Commun Stat Simul Comput. 2014;45(7):2377–91.
Google Scholar
Huang DS. Systematic theory of neural networks for pattern recognition. Beijing: Publishing House of Electronic Industry of China; 1996.
Google Scholar
Huang DS. Radial basis probabilistic neural networks: Model and application. Int J Pattern Recognit Artif Intell. 1999;13(7):1083–101.
Article
Google Scholar
Yang B, Chen Y, Jiang M. Reverse engineering of gene regulatory networks using flexible neural tree models. Neurocomputing. 2013;99(1):458–66.
Article
Google Scholar
Hegland M, Burden C, Santoso L, MacNamara S, Booth H. A solver for the stochastic master equation applied to gene regulatory networks. J Comput Appl Math. 2007;205(2):708–24.
Article
Google Scholar
Munsky B, Khammash M. The finite state projection approach for the analysis of stochastic noise in gene networks. IEEE Trans Autom Control. 2008;53(Special Issue):201–14.
Article
Google Scholar
Ding H, Luo LF. Kinetic model of the lysogeny/lysis switch of phage λ. Chin Phys Lett. 2009;26(9):098701.
Article
Google Scholar
Ji ZW, Su J, Wu D, Peng HM, Zhao WL, Zhao BN, Zhou XB. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model. Oncotarget. 2017;8(5):7647–65.
Article
PubMed
Google Scholar
Ding H, Luo LF, Lin H. Entropy production rate changes in lysogeny/lysis switch regulation of bacteriophage lambda. Commun Theor Phys. 2011;55(2):371–5.
Article
CAS
Google Scholar
Ji ZW, Zhao WL, Lin HK, Zhou XB. Systematically understanding the immunity leading to CRPC progression. PLoS Comput Biol. 2019;15(9):e1007344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng W, Ding H, Lin H, Luo LF. The lysogeny/lysis switch and entropies of stationary states in λ phage. Acta Phys Sin. 2012;61(16):168701.
Google Scholar
Ji ZW, Yan K, Li WY, Hu HG, Zhu XL. Mathematical and computational modeling in complex biological systems. Biomed Res Int. 2017;2017:5958321.
PubMed
PubMed Central
Google Scholar
Hohm T, Zitzler E. Multicellular pattern formation: parameter estimation for ordinary differential equation-based gene regulatory network models. IEEE Eng Med Biol Mag Q Mag Eng Med Biol Soc. 2009;28(4):52.
Article
Google Scholar
Tian T, Burrage K, Burrage PM, Carletti M. Stochastic delay differential equations for genetic regulatory networks. J Comput Appl Math. 2007;205(2):696–707.
Article
Google Scholar
Gebert J, Radde N, Weber GW. Modeling gene regulatory networks with piecewise linear differential equations. Eur J Oper Res. 2007;181(3):1148–65.
Article
Google Scholar
Jong HD, Page M. Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans Comput Biol Bioinform. 2008;5(2):208–22.
Article
PubMed
Google Scholar
Zhang Q, Yu Y, Zhang J, Liang H. Using single-index ODEs to study dynamic gene regulatory network. PLoS ONE. 2018;13(2):e0192833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee WP, Hsiao YT. An adaptive GA-PSO approach with gene clustering to infer s-system models of gene regulatory networks. Comput J. 2011;54(9):1449–64.
Article
Google Scholar
Chowdhury AR, Chetty M, Evans R. Stochastic S-system modeling of gene regulatory network. Cogn Neurodyn. 2015;9(5):535–47.
Article
PubMed
PubMed Central
Google Scholar
Chowdhury AR, Chetty M. Network decomposition based large-scale reverse engineering of gene regulatory network. Neurocomputing. 2015;160(21):213–27.
Article
Google Scholar
Nitta T. On the critical points of the complex-valued neural network. In: 9th international conference on neural information processing. 2002; p. 1099–1103.
Hirose A, Yoshida S. Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans Neural Netw Learn Syst. 2012;23(4):541–51.
Article
PubMed
Google Scholar
Wisdom S, Powers T, Hershey JR, Roux JL, Atlas L. Full-capacity unitary recurrent neural networks. Adv Neural Inf Process Syst. 2016;29:4880–8.
Google Scholar
You C, Hong D. Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks. IEEE Trans Neural Netw. 1998;9(6):1442–55.
Article
CAS
PubMed
Google Scholar
Deng JP, Sundararajan N, Saratchandran P. Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Trans Neural Netw. 2002;13(3):687–96.
Article
PubMed
Google Scholar
Hu J, Wang J. Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst. 2012;23(6):853–65.
Article
PubMed
Google Scholar
Trabelsi C, Bilaniuk O, Zhang Y, Serdyuk D, Subramanian S. Deep complex networks. In: ICLR. 2018; p. 1–19.
Yang B, Chen YH. A new complex-valued polynomial model. Neural Process Lett. 2018;50:1–18.
Google Scholar
Wu P, Chen Y. Grammar guided genetic programming for flexible neural trees optimization. Lect Notes Comput Sci. 2007;4426:964–71.
Article
Google Scholar
Song C. A complex-valued firefly algorithm. Intell Comput Theor Appl. 2019;11644:700–7.
Google Scholar
Yang XS, Hosseini SSS, Gandomi AH. Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput. 2012;12(3):1180–6.
Article
Google Scholar
Raza K, Alam M. Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput Biol Chem. 2016;64:322–34.
Article
CAS
PubMed
Google Scholar
Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci. 2002;99(16):10555–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 2002;13:1977–2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res. 2008;36:D866–70.
Article
CAS
PubMed
Google Scholar
Alberto S, Heladia S, Socorro G, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 2019;47(1):212–20.
Google Scholar
Yang B, Bao WZ. Complex-valued ordinary differential equation modeling for time series identification. IEEE Access. 2019;7:41033–42.
Article
Google Scholar
Luna JM, Romero JR, Ventura S. Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules. Knowl Inf Syst. 2012;32(1):53–76.
Article
Google Scholar