König J, Zarnack K, Luscombe NM, Ule J. Protein–RNA interactions: new genomic technologies and perspectives. Nat Rev Genet. 2012;13(2):77–83.
Article
Google Scholar
Rinn JL, Ule J. ’Oming in on RNA–protein interactions. Genome Biol. 2014;15:401. https://doi.org/10.1186/gb4158.
Article
PubMed
PubMed Central
Google Scholar
Lorković ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 2002;30(3):623–35.
Article
Google Scholar
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, De Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.
Article
CAS
Google Scholar
Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou M-M. Structure and conserved RNA binding of the PAZ domain. Nature. 2003;426(6965):469–74.
Article
CAS
Google Scholar
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA. Others: sequence, structure, and context preferences of human RNA binding proteins. Mol Cell. 2018;70(5):854–67.
Article
CAS
Google Scholar
Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009;27(7):667–70.
Article
CAS
Google Scholar
Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A. Others: a compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013;499(7457):172–7.
Article
CAS
Google Scholar
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 2008;456(7221):464–9.
Article
CAS
Google Scholar
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A-C, Munschauer M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141(1):129–41.
Article
CAS
Google Scholar
König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol. 2010;17(7):909.
Article
Google Scholar
Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K. Others: robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods. 2016;13(6):508–14.
Article
Google Scholar
Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011;8(7):559–64.
Article
CAS
Google Scholar
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):39–49.
Article
Google Scholar
Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics. 2006;22(14):141–9.
Article
Google Scholar
Hiller M, Pudimat R, Busch A, Backofen R. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res. 2006;34(17):117.
Article
Google Scholar
Kazan H, Ray D, Chan ET, Hughes TR, Morris Q. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 2010;6(7):1000832.
Article
Google Scholar
Orenstein Y, Wang Y, Berger B. RCK: accurate and efficient inference of sequence-and structure-based protein–RNA binding models from RNAcompete data. Bioinformatics. 2016;32(12):351–9.
Article
Google Scholar
Maticzka D, Lange SJ, Costa F, Backofen R. GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol. 2014;15(1):1–18.
Article
Google Scholar
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8.
Article
CAS
Google Scholar
Gandhi S, Lee LJ, Delong A, Duvenaud D, Frey BJ. cDeepbind: a context sensitive deep learning model of RNA–protein binding. bioRxiv. 2018;345140.
Ben-Bassat I, Chor B, Orenstein Y. A deep neural network approach for learning intrinsic protein–RNA binding preferences. Bioinformatics. 2018;34(17):638–46.
Article
Google Scholar
Su Y, Luo Y, Zhao X, Liu Y, Peng J. Integrating thermodynamic and sequence contexts improves protein–RNA binding prediction. PLoS Comput Biol. 2019;15(9):1007283.
Article
Google Scholar
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.
Koo PK, Anand P, Paul SB, Eddy SR. Inferring sequence-structure preferences of RNA-binding proteins with convolutional residual networks. bioRxiv. 2018;418459.
Sun L, Xu K, Huang W, Yang Y, Tang L, Xiong T, Zhang QC. Predicting dynamic cellular protein-RNA interactions using deep learning and in vivo RNA structure. bioRxiv. 2020.
Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung J-W, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET. Others: structural imprints in vivo decode RNA regulatory mechanisms. Nature. 2015;519(7544):486–90.
Article
CAS
Google Scholar
Yan Z, Hamilton WL, Blanchette M. Graph neural representational learning of RNA secondary structures for predicting RNA–protein interactions. Bioinformatics. 2020;36(Supplement–1):276–84.
Article
Google Scholar
Uhl M, Heyl F, Backofen R. Others: GraphProt2: a novel deep learning-based method for predicting binding sites of RNA-binding proteins. bioRxiv. 2019;850024.
Ghanbari M, Ohler U. Deep neural networks for interpreting RNA-binding protein target preferences. Genome Res. 2020;30(2):214–26.
Article
CAS
Google Scholar
Karin J, Michel H, Orenstein Y. Multirbp: multi-task neural network for protein-RNA binding prediction. In: Proceedings of the 12th ACM conference on bioinformatics, computational biology, and health informatics; 2021. p. 1–9.
Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: International conference on machine learning. PMLR; 2017. p. 3319–28.
Mukherjee N, Wessels H-H, Lebedeva S, Sajek M, Ghanbari M, Garzia A, Munteanu A, Yusuf D, Farazi T, Hoell JI, et al. Deciphering human ribonucleoprotein regulatory networks. Nucleic Acids Res. 2019;47(2):570–81.
Article
CAS
Google Scholar
Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene JD, Ohler U. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 2011;12(8):1–16.
Article
Google Scholar
Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences. Bioinformatics. 2006;22(5):614–5.
Article
CAS
Google Scholar
Fukunaga T, Ozaki H, Terai G, Asai K, Iwasaki W, Kiryu H. CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data. Genome Biol. 2014;15(1):1–15.
Article
Google Scholar
Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv preprint arXiv:1412.6980.
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings; 2010. p. 249–56.
Branco P, Torgo L, Ribeiro R. A survey of predictive modelling under imbalanced distributions. 2015. arXiv preprint arXiv:1505.01658.
Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning. PMLR; 2017. p. 3145–53.
Sturmfels P, Lundberg S, Lee S-I. Visualizing the impact of feature attribution baselines. Distill. 2020;5(1):22.
Article
Google Scholar
Kindermans P-J, Hooker S, Adebayo J, Alber M, Schütt KT, Dähne S, Erhan D, Kim B. The (un) reliability of saliency methods. In: Samek W, Montavon G, Vedaldi A, Hansen L, Müller KR, editors. Explainable AI: interpreting, explaining and visualizing deep learning. Cham: Springer; 2019. p. 267–80.
Chapter
Google Scholar
Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker I.L. Viennarna package 2.0. Algorithms Mol Biol. 2011;6(1):1–14.
Article
Google Scholar
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U, Keene JD. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell. 2011;43(3):327–39.
Article
CAS
Google Scholar
Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol. 2000;20(5):1515–25.
Article
CAS
Google Scholar
Yao Y, Song L, Katz Y, Galili G. Cloning and characterization of Arabidopsis homologues of the animal CSTF complex that regulates 3′ MRNA cleavage and polyadenylation. J Exp Bot. 2002;53(378):2277–8.
Article
CAS
Google Scholar
MacDonald CC, Wilusz J, Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol. 1994;14(10):6647–54.
CAS
PubMed
PubMed Central
Google Scholar
Yao C, Biesinger J, Wan J, Weng L, Xing Y, Xie X, Shi Y. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci. 2012;109(46):18773–8.
Article
CAS
Google Scholar
Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell. 2014;54(5):887–900.
Article
CAS
Google Scholar
Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1251–8.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. 2017. arXiv:1706.03762.
Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep contextualized word representations. 2018. arXiv preprint arXiv:1802.05365.
Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. 2019. arXiv:1810.04805.
Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing noise by adding noise. 2017. arXiv:1706.03825.
Koo PK, Ploenzke M, Anand P, Paul S, Majdandzic A. Global importance analysis: a method to quantify importance of genomic features in deep neural networks. bioRxiv. 2020.