Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.
Article
PubMed
Google Scholar
Tonkens R. An overview of the drug development process. Phys Exec. 2005;31:48–52.
Google Scholar
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016;17:2–12.
Article
PubMed
Google Scholar
Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng F, Kovács IA, Barabási A-L. Network-based prediction of drug combinations. Nat Commun. 2019;10:1–11.
Article
Google Scholar
Breitinger H-G. Drug synergy-mechanisms and methods of analysis. In: Acree B, editor. Toxicity and drug testing. InTech; 2012. p. 143–66.
Google Scholar
Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Dana Lee AK, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346:1480–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152:9–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. Deepsynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018;34:1538–46.
Article
CAS
PubMed
Google Scholar
Xia F, Shukla M, Brettin T, Garcia-Cardona C, Cohn J, Allen JE, Maslov S, Holbeck SL, Doroshow JH, Evrard YA, Stahlberg EA, Stevens RL. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 2018;19:71–9.
Article
Google Scholar
Kim Y, Zheng S, Tang J, Zheng WJ, Li Z, Jiang X. Anticancer drug synergy prediction in understudied tissues using transfer learning. J Am Med Inform Assoc. 2021;28:42–51.
Article
PubMed
Google Scholar
Zhang T, Zhang L, Payne PRO, Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. In: Markowitz J, editor. Translational bioinformatics for therapeutic development. Springer; 2021. p. 223–38.
Chapter
Google Scholar
Janizek JD, Celik S, Lee S-I. Explainable machine learning prediction of synergistic drug combinations for precision cancer medicine. bioRxiv. 2018.
Celebi R, Bear Don’t Walk O, Movva R, Alpsoy S, Dumontier M. In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci Rep. 2019;9:1–10.
Article
CAS
Google Scholar
Jeon M, Kim S, Park S, Lee H, Kang J. In silico drug combination discovery for personalized cancer therapy. BMC Syst Biol. 2018;12:59–67.
Article
Google Scholar
Li J, Huo Y, Wu X, Liu E, Zeng Z, Tian Z, Fan K, Stover D, Cheng L, Li L. Essentiality and transcriptome-enriched pathway scores predict drug-combination synergy. Biology. 2020;9:278.
Article
CAS
PubMed Central
Google Scholar
Zhu F, Patumcharoenpol P, Zhang C, Chan YYJ, Meechai A, Vongsangnak W, Shen B. Biomedical text mining and its applications in cancer research. J Biomed Inform. 2013;46:200–11.
Article
PubMed
Google Scholar
Holbeck SL, Camalier R, Crowell JA, Govindharajulu JP, Hollingshead M, Anderson LW, Polley E, Rubinstein L, Srivastava A, Wilsker D, Collins JM, Doroshow JH. The national cancer institute almanac: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Can Res. 2017;77:3564–76.
Article
CAS
Google Scholar
Bliss CI. The toxicity of poisons applied jointly 1. Ann Appl Biol. 1939;26:585–615.
Article
CAS
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. Pubchem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:1388–95.
Article
Google Scholar
Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29:25–38.
Article
PubMed
PubMed Central
Google Scholar
Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.
Article
PubMed
Google Scholar
Chen T, Guestrin CE. Xgboost: a scalable tree boosting system. In: Krishnapuram B, editor. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. p. 785–94.
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. In: Fürnkranz J, editor. Machine learning. Springer; 2006. p. 3–42.
Google Scholar
Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35:352–9.
Article
PubMed
Google Scholar
Fan K, Cheng L, Li L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Brief Bioinform. 2021;22:1–12.
Article
Google Scholar
Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. Cellminer cross-database (CellMinerCDB) version 12: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021;49:1083–93.
Article
Google Scholar
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:901–6.
Article
Google Scholar
Zagidullin B, Aldahdooh J, Zheng S, Wang W, Wang Y, Saad J, Malyutina A, Jafari M, Tanoli Z, Pessia A, Tang J. Drugcomb: an integrative cancer drug combination data portal. Nucleic Acids Res. 2019;47:43–51.
Article
Google Scholar
Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Consortium A-SDCD, Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, Tang EKY, Garnett MJ, Veroli GYD, Fawell S, Stolovitzky G, Guinney J, Dry JR, Saez-Rodriguez J. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications 2019;10:1–17.