Payne PRO. Chapter 1: biomedical knowledge integration. PLoS Comput Biol. 2012;8(12):e1002826.
Article
CAS
Google Scholar
Rogers FB. Medical subject headings. Bull Med Libr Assoc. 1963;51(1):114–6.
CAS
PubMed
PubMed Central
Google Scholar
Forrey AW, McDonald CJ, DeMoor G, et al. Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin Chem. 1996;42(1):81–90.
Article
CAS
Google Scholar
Lussier YA, Rothwell DJ, Côté RA. The SNOMED model: a knowledge source for the controlled terminology of the computerized patient record. Methods Inf Med. 1998;37(2):161–4.
Article
CAS
Google Scholar
Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109–17.
Article
CAS
Google Scholar
Nelson SJ, Zeng K, Kilbourne J, et al. Normalized names for clinical drugs: RxNorm at 6 years. J Am Med Inform Assoc. 2011;18(4):441–8.
Article
Google Scholar
Humphreys BL, Lindberg DA, Schoolman HM, Barnett GO. The unified medical language system: an informatics research collaboration. J Am Med Inform Assoc. 1998;5(1):1–11.
Article
CAS
Google Scholar
Bard J, Rhee SY, Ashburner M. An ontology for cell types. Genome Biol. 2005;6(2):R21.
Article
Google Scholar
Brickley D, Guha RV. Resource description framework (RDF) schema specification. Technical Report 19990303, World Wide Web Consortium, Cambridge, MA, USA, 1999. https://www.w3.org/TR/1999/PR-rdf-schema-19990303/.
Bechhofer S, van Harmelen F, Hendler J, et al. Owl web ontology language reference. Technical Report 20040210, World Wide Web Consortium, Cambridge, MA, USA, 2004. https://www.w3.org/TR/2004/REC-owl-ref-20040210/.
Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.
Article
CAS
Google Scholar
Wishart DS. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(90001):D668–72. https://doi.org/10.1093/nar/gkj067.
Article
CAS
PubMed
Google Scholar
Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2018;47(D1):D930–40. https://doi.org/10.1093/nar/gky1075.
Article
CAS
PubMed Central
Google Scholar
Bateman A, Martin M-J, Orchard S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2020;49(D1):D480-9. https://doi.org/10.1093/nar/gkaa1100.
Article
CAS
Google Scholar
Frolkis A, Knox C, Lim E, et al. SMPDB: the small molecule pathway database. Nucleic Acids Res. 2009;38(suppl–1):D480–7. https://doi.org/10.1093/nar/gkp1002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jewison T, Su Y, Disfany FM, et al. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 2013;42(D1):D478–84. https://doi.org/10.1093/nar/gkt1067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabregat A, Korninger F, Viteri G, et al. Reactome graph database: efficient access to complex pathway data. PLoS Comput Biol. 2018;14(1): e1005968. https://doi.org/10.1371/journal.pcbi.1005968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rindflesch TC, Fiszman M. The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform. 2003;36(6):462–77.
Article
Google Scholar
Goryachev S, Sordo M, Zeng QT. A suite of natural language processing tools developed for the I2B2 project. In: American medical informatics association symposium proceedings. vol 2006, 2006. p. 931.
Valenzuela-Escárcega Marco A, Babur Özgün. Gus Hahn-Powell, et al. Large-scale automated machine reading discovers new cancer-driving mechanisms. Database, 2018.
Sharp R, Pyarelal A, Gyori B, et al. Eidos, INDRA, & Delphi: from free text to executable causal models. In: Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics (Demonstrations), 2019.
Xing R, Luo J, Song T. BioRel: towards large-scale biomedical relation extraction. BMC Bioinform. 2020;21(16):543.
Article
Google Scholar
Glavaški M, Velicki L. Humans and machines in biomedical knowledge curation: hypertrophic cardiomyopathy molecular mechanisms’ representation. BioData Min. 2021;14(1):45.
Article
Google Scholar
National Library of Medicine (US). Pubmed [internet], 1964. https://www.ncbi.nlm.nih.gov/pubmed/.
Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics. 2012;28(23):3158–60. https://doi.org/10.1093/bioinformatics/bts591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith B, Ceusters W, Klagges B, et al. Relations in biomedical ontologies. Genome Biol. 2005;6(5):R46.
Article
Google Scholar
Beisswanger E, Schulz S, Stenzhorn H, Hahn U. BioTop: an upper domain ontology for the life sciences. Appl Ontol. 2008;3(4):205–12.
Article
Google Scholar
Musen MA, Noy NF, Shah NH, et al. The national center for biomedical ontology. J Am Med Inform Assoc. 2012;19(2):190–5.
Article
Google Scholar
Dumontier M, Baker CJO, Baran J, et al. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J Biomed Semant. 2014;5(1):14.
Article
Google Scholar
Jackson R, Matentzoglu N, Overton JA, et al. OBO Foundry in 2021: operationalizing open data principles to evaluate ontologies. Database, 2021. https://doi.org/10.1093/database/baab069
Doğan T, Atas H, Joshi V, et al. CROssBAR: comprehensive resource of biomedical relations with deep learning applications and knowledge graph representations. bioRxiv, 2020. https://doi.org/10.1101/2020.09.14.296889
Pareja-Tobes P, Tobes R, Manrique M, et al. Bio4j: a high-performance cloud-enabled graph-based data platform. bioRxiv, 2015. https://doi.org/10.1101/016758
Birkland A, Yona G. BIOZON: a system for unification, management and analysis of heterogeneous biological data. BMC Bioinform. 2006;7(1):70.
Article
Google Scholar
Fiannaca A, La Rosa M, La Paglia L, et al. Biographdb: a new graphdb collecting heterogeneous data for bioinformatics analysis. In: Eighth international conference on bioinformatics, biocomputational systems and biotechnologies, Wilmington, IARIA, 2016.
Himmelstein DS, Lizee A, Hessler C, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017;6: e26726. https://doi.org/10.7554/eLife.26726.
Article
PubMed
PubMed Central
Google Scholar
Baranzini S, Huang S, Israni S, et al. Scalable precision medicine knowledge engine, 2021. Accessed: 2021-06-01. https://spoke.ucsf.edu.
Sanders G, Pearce R, Baranzini SE. Topological analysis of the SPOKE graph. Technical report, U. S. Department of Energy, 2020. https://doi.org/10.2172/1669224
Liu Yi, Elsworth Benjamin, Erola Pau, et al. EpiGraphDB: a database and data mining platform for health data science. Bioinformatics, 2020.
Ioannidis VN, Zheng D, Karypis G. Few-shot link prediction via graph neural networks for covid-19 drug-repurposing. Preprint arXiv:2007.10261, 2020.
Dumontier M, Callahan A, Cruz-Toledo J, et al. Bio2RDF release 3: a larger connected network of linked data for the life sciences. In: Proceedings of the 2014 international conference on posters & demonstrations track, 2014, vol. 1272, pp. 401–404.
Livingston KM, Bada M, Baumgartner WA, Hunter LE. KaBOB: ontology-based semantic integration of biomedical databases. BMC Bioinform. 2015;16(1):126.
Article
Google Scholar
Zhang Y, Sheng M, Zhou R, et al. HKGB: an inclusive, extensible, intelligent, semi-auto-constructed knowledge graph framework for healthcare with clinicians’ expertise incorporated. Inf Process Manag. 2020;57(6): 102324. https://doi.org/10.1016/j.ipm.2020.102324.
Article
Google Scholar
Morton K, Wang P, Bizon C, et al. ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics. 2019;35(24):5382–4.
Article
CAS
Google Scholar
Fecho K, Bizon C, Miller F, et al. A biomedical knowledge graph system to propose mechanistic hypotheses for real-world environmental health observations: cohort study and informatics application. JMIR Med Inform. 2021;9(7): e26714. https://doi.org/10.2196/26714.
Article
PubMed
PubMed Central
Google Scholar
Xin J, Afrasiabi C, Lelong S, et al. Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration. BMC Bioinform. 2018;19(1):30.
Article
Google Scholar
Byrd WE, Rosenblatt G, Patton MJ, et al. mediKanren: a system for bio-medical reasoning. In Proceedings of the 2020 ACM SIGPLAN international conference on functional programming, 2020.
Mungall C, Chiba H, Kawashima S, et al. Logic programming for the biomedical sciences, 2020. https://doi.org/10.37044/osf.io/km9ux .
Reese J, Unni D, Callahan TJ, et al. KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response. bioRxiv, 2020.
Bruskiewich R, Unni D, Mungall C, et al. biolink/biolink-model: 2.0.0, 2021. https://doi.org/10.5281/ZENODO.4895425.
Unni DR, Moxon SAT, Bada M, et al. Biolink model: a universal schema for knowledge graphs in clinical, biomedical, and translational science. Clin Transl Sci, 2022.
Biomedical Data Translator Consortium. Toward a universal biomedical data translator. Clin Transl Sci. 2019;12(2):86–90.
McMurry JA, Köhler S, Washington NL, et al. Navigating the phenotype frontier: the monarch initiative. Genetics. 2016;203(4):1491–5. https://doi.org/10.1534/genetics.116.188870.
Article
PubMed
PubMed Central
Google Scholar
Mungall CJ, McMurry JA, Köhler S, et al. The monarch initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2017;45(D1):D712–22.
Article
CAS
Google Scholar
Shefchek KA, Harris NL, Gargano M, et al. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2019;48(D1):D704–15. https://doi.org/10.1093/nar/gkz997.
Article
CAS
PubMed Central
Google Scholar
Galárraga L, Heitz G, Murphy K, Suchanek FM. Canonicalizing open knowledge bases. In Proceedings of the 23rd ACM International conference on conference on information and knowledge management, 2014. pp. 1679–1688
Messina A, Pribadi H, Stichbury J, et al. BioGrakn: a knowledge graph-based semantic database for biomedical sciences. In Leonard B, Olivier T, editors, Complex, Intelligent, and Software Intensive Systems, Springer International Publishing, 2018. pp. 299–309.
Waagmeester A, Stupp G, Burgstaller-Muehlbacher S, et al. Science forum: Wikidata as a knowledge graph for the life sciences. Elife. 2020;9: e52614. https://doi.org/10.7554/eLife.52614.
Article
PubMed
PubMed Central
Google Scholar
Ramsey S, Koslicki D, Yao Y, et al. RTXteam/RTX: Initial proof-of-concept software version from November 2017, 2018. https://doi.org/10.5281/ZENODO.1185486
Mungall CJ, McMurry JA, Köhler S, et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2016;45(D1):D712–22. https://doi.org/10.1093/nar/gkw1128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elsworth B, Epigraph DB. 2021. https://doi.org/10.5281/ZENODO.4534128.
Callahan TJ, Tripodi IJ, Hunter LE, Baumgartner WA. A framework for automated construction of heterogeneous large-scale biomedical knowledge graphs. bioRxiv, 2020. https://doi.org/10.1101/2020.04.30.071407
Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
Article
Google Scholar
Zaveri A, Dastgheib S, Wu C, et al. smartAPI: towards a more intelligent network of web APIs. In Eva B, Diana M, Aldo G, et al., editors, The Semantic Web, Springer International Publishing, 2017. pp. 154–169.
Glen AK, Ma C, Mendoza L, et al. ARAX: a graph-based modular reasoning tool for translational biomedicine. bioRxiv, 2022. https://doi.org/10.1101/2022.08.12.503810
Hipp RD. SQLite, 2020. https://www.sqlite.org/index.html.
Gandon F, Schreiber G, Beckett D. RDF 1.1 XML Syntax. Technical Report 20140225, World Wide Web Consortium, Cambridge, MA, 2014. http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/.
UMLS Team. UMLS Reference Manual, chapter 3. National Library of Medicine (US), Bethesda, 2009. https://www.ncbi.nlm.nih.gov/books/NBK9685.
Davies M, Nowotka Mł, Papadatos G, et al. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):W612–20. https://doi.org/10.1093/nar/gkv352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freshour SL, Kiwala S, Cotto KC, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2020;49(D1):D1144–51. https://doi.org/10.1093/nar/gkaa1084.
Article
CAS
PubMed Central
Google Scholar
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res, 2019. https://doi.org/10.1093/nar/gkz1021
Avram S, Bologa CG, Holmes J, et al. DrugCentral 2021 supports drug discovery and repositioning. Nucleic Acids Res. 2020;49(D1):D1160–9. https://doi.org/10.1093/nar/gkaa997.
Article
CAS
PubMed Central
Google Scholar
Yates AD, Achuthan P, Akanni W, et al. Ensembl 2020. Nucleic Acids Res, 2019. https://doi.org/10.1093/nar/gkz966
Malone J, Holloway E, Adamusiak T, et al. Modeling sample variables with an experimental factor ontology. Bioinformatics. 2010;26(8):1112–8.
Article
CAS
Google Scholar
Carbon S, Douglass E, Good BM, et al. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 2020;49(D1):D325–34. https://doi.org/10.1093/nar/gkaa1113.
Article
CAS
Google Scholar
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database):D521–6. https://doi.org/10.1093/nar/gkl923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wishart DS, Knox C, Guo AC, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(Database):D603–10. https://doi.org/10.1093/nar/gkn810.
Article
CAS
PubMed
Google Scholar
Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res. 2012;41(D1):D801–7. https://doi.org/10.1093/nar/gks1065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46(D1):D608–17. https://doi.org/10.1093/nar/gkx1089.
Article
CAS
PubMed Central
Google Scholar
Hermjakob H. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32(90001):452D – 455. https://doi.org/10.1093/nar/gkh052.
Article
CAS
Google Scholar
Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2011;40(D1):D841–6. https://doi.org/10.1093/nar/gkr1088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pletscher-Frankild S, Pallejà A, Tsafou K, et al. DISEASES: text mining and data integration of disease-gene associations. Methods. 2015;74:83–9. https://doi.org/10.1016/j.ymeth.2014.11.020.
Article
CAS
PubMed
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2020;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
PubMed Central
Google Scholar
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(90001):109D – 111. https://doi.org/10.1093/nar/gkh023.
Article
CAS
Google Scholar
Griffiths-Jones S. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(90001):D140–4. https://doi.org/10.1093/nar/gkj112.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2007;36(Database):D154–8. https://doi.org/10.1093/nar/gkm952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39(Database):D152–7. https://doi.org/10.1093/nar/gkq1027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2018;47(D1):D155–62. https://doi.org/10.1093/nar/gky1141.
Article
CAS
PubMed Central
Google Scholar
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015;44(D1):D7–19. https://doi.org/10.1093/nar/gkv1290.
Weinreich SS, Magnon R, Sikkens JJ, et al. Orphanet: een Europese database over zeldzame ziekten [Orphanet: a European database for rare diseases]. Nederlands tijdschrift voor geneeskunde, 2008;152(9):518–519. https://pubmed.ncbi.nlm.nih.gov/18389888/.
Pon A, Jewison T, Yilu S, et al. Pathways with PathWhiz. Nucleic Acids Res. 2015;43(W1):W552–9. https://doi.org/10.1093/nar/gkv399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez-Gaona M, Marcu A, Pon A, et al. A web tool for generating high quality machine-readable biological pathways. J Vis Exp, 120, 2017. https://doi.org/10.3791/54869
Wishart DS, Li C, Marcu A, et al. PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res. 2019;48(D1):D470–8. https://doi.org/10.1093/nar/gkz861.
Article
CAS
PubMed Central
Google Scholar
Jassal B, Matthews L, Viteri G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gkz1031.
Article
PubMed Central
Google Scholar
Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32(90001):267D – 270. https://doi.org/10.1093/nar/gkh061.
Article
CAS
Google Scholar
Chambers J, Davies M, Gaulton A, et al. UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform. 2013. https://doi.org/10.1186/1758-2946-5-3.
Article
PubMed
PubMed Central
Google Scholar
World Wide Web Consortium et al. RDF 1.1 Turtle: terse RDF triple language. Technical Report 20140225, World Wide Web Consortium, Cambridge, MA, USA, 2014. https://www.w3.org/TR/turtle/.
Vasant D, Chanas L, Malone J, et al. Ordo: an ontology connecting rare disease, epidemiology and genetic data. In Proceedings of ISMB, vol. 30, 2014.
Smaili FZ, Gao X, Hoehndorf R. Formal axioms in biomedical ontologies improve analysis and interpretation of associated data. Bioinformatics. 2019;36(7):2229–36. https://doi.org/10.1093/bioinformatics/btz920.
Article
CAS
PubMed Central
Google Scholar
Smith B, Ceusters W. Ontological realism: a methodology for coordinated evolution of scientific ontologies. Appl Ontol. 2010;5(3–4):139–88.
Article
Google Scholar
Schoch CL, Ciufo S, Domrachev M, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020. https://doi.org/10.1093/database/baaa062
Fielding RT. REST: architectural styles and the design of network-based software architectures. Doctoral dissertation, University of California, Irvine, 2000. http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.
Sinha M, Ramsey SA. Using a general prior knowledge graph to improve data-driven causal network learning. In AAAI spring symposium: combining machine learning with knowledge engineering, 2021.
Chodpathumwan Y, Termehchy A, Ramsey SA, et al. Structural generalizability: the case of similarity search. In Proceedings of the 2021 International Conference on Management of Data, SIGMOD/PODS ’21, page 326-338, New York, NY, USA, 2021. Association for Computing Machinery. https://doi.org/10.1145/3448016.3457316
Womack F, McClelland J, Koslicki D. Leveraging distributed biomedical knowledge sources to discover novel uses for known drugs. bioRxiv, 2019. https://doi.org/10.1101/765305
Unni D, Shefchek K. SRI Reference KG, 2022. https://github.com/Knowledge-Graph-Hub/sri-reference-kg.
Courtot M, Gibson F, Lister Al, et al. MIREOT: the Minimum Information to Reference an External Ontology Term. Nature Precedings, 2009.
Sikos Leslie F, Philp D. Provenance-aware knowledge representation: a survey of data models and contextualized knowledge graphs. Data Sci Eng. 2020;5(3):293–316.
Article
Google Scholar
Unni D, Bruskiewich R, Hannestad L, et al. Knowledge graph exchange library, 2021. https://github.com/biolink/kgx.
Steyvers M, Tenenbaum JB. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn Sci. 2005;29(1):41–78.
Article
Google Scholar
Ding Y, Yu H, Huang R, Gu Y. Complex network based knowledge graph ontology structure analysis. In 2018 1st IEEE international conference on hot information-centric networking (HotICN). IEEE, 2018. https://doi.org/10.1109/hoticn.2018.8606002
Fedorowicz J. A Zipfian model of an automatic bibliographic system: an application to MEDLINE. J Am Soc Inf Sci. 1982;33(4):223–32. https://doi.org/10.1002/asi.4630330406.
Article
CAS
PubMed
Google Scholar
Kalankesh LR, Stevens R, Brass A. The language of gene ontology: a Zipf’s law analysis. BMC Bioinform. 2012;13(1):127.
Article
Google Scholar
Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab, 1999.
Francis N, Green A, Guagliardo P, et al. Cypher: an evolving query language for property graphs. In: Proceedings of the 2018 international conference on management of data, pp. 2018:1433–1445.
Birbeck M, McCarron S. CURIE syntax 1.0: a syntax for expressing compact URIs. Technical Report 20101216, World Wide Web Consortium, Cambridge, MA, 2010. https://www.w3.org/TR/2010/NOTE-curie-20101216/.
Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32(Database issue):D267-70.
Article
CAS
Google Scholar
McKusick VA. Mendelian Inheritance in Man and its online version. OMIM Am J Hum Genet. 2007;80(4):588–604.
Article
CAS
Google Scholar
Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. In Gaël V, Travis V, and Jarrod M, editors, Proceedings of the 7th Python in Science Conference, Pasadena, CA, 2008. pp. 11–15.
Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2015;44(D1):D1214–9. https://doi.org/10.1093/nar/gkv1031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fey P, Dodson RJ, Basu S, Chisholm RL. One stop shop for everything dictyostelium: dictyBase and the Dicty Stock Center in 2012. In Methods in Molecular Biology, Humana Press, 2013. pp. 59–92. https://doi.org/10.1007/978-1-62703-302-2_4
Basu S, Fey P, Pandit Y, et al. dictyBase 2013: integrating multiple dictyostelid species. Nucleic Acids Res. 2012;41(D1):D676–83. https://doi.org/10.1093/nar/gks1064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fey P, Gaudet P, Curk T, et al. dictyBase-a dictyostelium bioinformatics resource update. Nucleic Acids Res. 2008;37(suppl–1):D515–9. https://doi.org/10.1093/nar/gkn844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chisholm RL. dictyBase, the model organism database for dictyostelium discoideum. Nucleic Acids Res. 2006;34(90001):D423–7. https://doi.org/10.1093/nar/gkj090.
Article
CAS
PubMed
Google Scholar
Kreppel L. dictyBase: a new dictyostelium discoideum genome database. Nucleic Acids Res. 2004;32(90001):332D – 333. https://doi.org/10.1093/nar/gkh138.
Article
CAS
Google Scholar
Mungall C, Tan S, Vasilevsky N, et al. obophenotype/cell-ontology: 2021-04-22 release, 2021. https://doi.org/10.5281/ZENODO.592969
Bard Jonathan. A new ontology (structured hierarchy) of human developmental anatomy for the first 7 weeks (Carnegie stages 1–20). J Anat. 2012;221(5):406–16. https://doi.org/10.1111/j.1469-7580.2012.01566.x.
Article
PubMed
PubMed Central
Google Scholar
Chen C, Huang H, Ross Karen E, et al. Protein ontology on the semantic web for knowledge discovery. Sci Data. 2020. https://doi.org/10.1038/s41597-020-00679-9.
Article
PubMed
PubMed Central
Google Scholar