Akleman E. Deep learning. Computer. 2020;53:17. https://doi.org/10.1109/MC.2020.3004171.
Article
Google Scholar
Beall A. Ai could match missing kids to old photos. New Sci. 2017;3154:14.
Article
Google Scholar
Burton A, Wilson S, Cowan M, Bruce V. Face recognition in poor-quality video; evidence from security surveillance. Psychol Sci. 1999. https://doi.org/10.1111/1467-9280.00144.
Article
Google Scholar
Cale J, Holt T, Leclerc B, Singh S, Drew J. Crime commission processes in child sexual abuse material production and distribution: a systematic review. Trends Issues Crime Criminal Justice. 2021;617:1–22.
Google Scholar
Castner N, Kuebler TC, Scheiter K, Richter J, Eder T, Hüttig F, Keutel C, Kasneci E. Deep semantic gaze embedding and scanpath comparison for expertise classification during opt viewing. In: ACM symposium on eye tracking research and applications. 2020. p. 1–10.
Charman SD, Carol RN. Age-progressed images may harm recognition of missing children by increasing the number of plausible targets. J Appl Res Mem Cogn. 2012;1(3):171–8.
Article
Google Scholar
Chen D, Zhang S, Ouyang W, Yang J, Tai Y. Person search by separated modeling and a mask-guided two-stream cnn model. IEEE Trans Image Process. 2020;29:4669–82. https://doi.org/10.1109/TIP.2020.2973513.
Article
Google Scholar
Chen T, Schultz Z, Levin I. Infrared spectroscopic imaging of latent fingerprints and associated forensic evidence. Analyst. 2009;134:1902–4. https://doi.org/10.1039/b908228j.
Article
CAS
Google Scholar
Cireşan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2012. https://doi.org/10.1109/CVPR.2012.6248110
Collins T, Wolff L. Work in progress: twenty-five years of the convention on the rights of the child.” The general measures of implementation across the globe. Can J Children’s Rights/Revue canadienne des droits des enfants. 2014;1(1):78.
Curtin JP, Hall J. Fully connected network. Google Patents. US Patent 9,942,133. 2018.
De Back W, Seurig S, Wagner S, Marré B, Roeder I, Scherf N. Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging. 2019.
Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol. 1973;45:211–27.
CAS
Google Scholar
Dornaika F, Bekhouche S, Arganda-Carreras I. Robust regression with deep cnns for facial age estimation: an empirical study. Expert Syst Appl. 2020;141: 112942. https://doi.org/10.1016/j.eswa.2019.112942.
Article
Google Scholar
Ekizoglu O, Inci E, Ors S, Hocaoglu E, Can IO, Basa CD, Kacmaz IE, Kranioti EF. Forensic age diagnostics by magnetic resonance imaging of the proximal humeral epiphysis. Int J Legal Med. 2019;133(1):249–56.
Article
Google Scholar
Ferri G, Alú M, Corradini B, Beduschi G. Forensic botany: Species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med. 2009;123:395–401. https://doi.org/10.1007/s00414-009-0356-5.
Article
Google Scholar
Gal Y, Ghahramani Z. Bayesian convolutional neural networks with Bernoulli approximate variational inference. 2016. arXiv:1506.02158
Gier VS, Kreiner DS, Hudnell WJ. Amber alerts: are school-type photographs the best choice for identifying missing children? J Police Crim Psychol. 2012;27(1):9–23.
Article
Google Scholar
Grigoras C. Applications of enf criterion in forensic audio, video, computer and telecommunication analysis. Forensic Sci Int. 2007;167(2–3):136–45.
Article
Google Scholar
Gulsahi A, Kulah CK, Bakirarar B, Gulen O, Kamburoglu K. Age estimation based on pulp/tooth volume ratio measured on cone-beam ct images. Dentomaxillofac Radiol. 2018;47(1):20170239.
Article
Google Scholar
Gurses MS, Altinsoy HB. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the vieth method in living individuals: applicability in the estimation of forensic age. Aust J Forensic Sci. 2020;53:431–47.
Article
Google Scholar
Gusarev M, Kuleev R, Khan A, Ramirez Rivera A, Khattak A. Deep learning models for bone suppression in chest radiographs. 2017. p. 1–7. https://doi.org/10.1109/CIBCB.2017.8058543.
Haider KZ, Malik KR, Khalid S, Nawaz T, Jabbar S. Deepgender: real-time gender classification using deep learning for smartphones. J Real-Time Image Proc. 2019;16(1):15–29.
Article
Google Scholar
Hepler AB, Saunders CP, Davis LJ, Buscaglia J. Score-based likelihood ratios for handwriting evidence. Forensic Sci Int. 2012;219(1–3):129–40.
Article
Google Scholar
Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA. Paediatric bone age assessment using deep convolutional neural networks. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer; 2018. p. 300–8.
Iscan M, Steyn M. The human skeleton in forensic medicine. 2013.
Jain S, Nagi R, Daga M, Shandilya A, Shukla A, Parakh A, Laheji A, Singh R. Tooth coronal index and pulp/tooth ratio in dental age estimation on digital panoramic radiographs—a comparative study. Forensic Sci Int. 2017;277:115–21.
Article
Google Scholar
Kalansuriya T, Dharmaratne A. Facial image classification based on age and gender. 2013. p. 44–50. https://doi.org/10.1109/ICTer.2013.6761153.
Kalansuriya T, Dharmaratne A. Neural network based age and gender classification for facial images. Int J Adv ICT Emerg Regions (ICTer). 2014;7:57. https://doi.org/10.4038/icter.v7i2.7178.
Article
Google Scholar
Kim J, Bae W, Jung K-H, Song IS. Development and validation of deep learning-based algorithms for the estimation of chronological age using panoramic dental X-ray images. In: MIDL (2019)
Klaassen K. Orthopantomography: radiology reference article. https://radiopaedia.org/articles/orthopantomography
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–1105.
Kwno YH, Lobo NDV. Age classification from facial images. J Comput Vis Image Underst. 1999;74:1–21.
Article
Google Scholar
Lampinen J, Arnal JD, Adams J, Courtney K, Hicks JL. Forensic age progression and the search for missing children. Psychol Crime Law. 2012;18(4):405–15.
Article
Google Scholar
Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas B, Alkasab T, Choy G, Do S. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9955-8.
Article
Google Scholar
Li Y, Huang Z, Dong X, Liang W, Xue H, Zhang L, Zhang Y, Deng Z. Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol. 2018. https://doi.org/10.1007/s00330-018-5791-6.
Article
Google Scholar
Liao X, Li K, Zhu X, Liu KJR. Robust detection of image operator chain with two-stream convolutional neural network. IEEE J Sel Top Signal Process. 2020;14(5):955–68. https://doi.org/10.1109/JSTSP.2020.3002391.
Article
Google Scholar
Lindenbergh A, De Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M, Sijen T. A multiplex (m)rna-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet. 2012;6:565–77. https://doi.org/10.1016/j.fsigen.2012.01.009.
Article
CAS
Google Scholar
Malli RC, Aygun M, Ekenel HK. Apparent age estimation using ensemble of deep learning models. 2016. https://doi.org/10.1109/CVPRW.2016.94.
Manos GK, Cairns AY, Rickets IW, Sinclair D. Segmenting radiographs of the hand and wrist. Comput Methods Programs Biomed. 1994;43:227–37. https://doi.org/10.1016/0169-2607(94)90074-4.
Article
CAS
Google Scholar
Miao X, Li B, Shen Y, Yu H, Zhu G, Liang C, Fu X, Wang C, Li S, Zhang B. Development and verification of an economical method of custom target library construction. ACS Omega. 2020;5(22):13087–95.
Article
CAS
Google Scholar
Nam SH, Kim YH, Truong NQ, Choi J, Park KR. Age estimation by super-resolution reconstruction based on adversarial networks. IEEE Access. 2020;8:17103–20. https://doi.org/10.1109/ACCESS.2020.2967800.
Article
Google Scholar
Nayar AK, Parhar S, Thind G, Sharma A, Sharma D. Determination of age, sex, and blood group from a single tooth. J Forensic Dent Sci. 2017;9(1):10.
Google Scholar
Niu Z, Zhou M, Wang L, Gao X. Ordinal regression with multiple output cnn for age estimation. 2016. , p. 4920–8. https://doi.org/10.1109/CVPR.2016.532.
Noblett MG, Pollitt MM, Presley LA. Recovering and examining computer forensic evidence. Forensic Sci Commun. 2000;2(4):1–2.
Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral-and the proximal tibial epiphyses using closest-to-bone t1 tse sequence. Eur Radiol. 2017;27(12):5041–8.
Article
Google Scholar
Pan S, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–59. https://doi.org/10.1109/TKDE.2009.191.
Article
Google Scholar
Patel AJ, Shah JS. Age determination in children by orthopantomograph and lateral cephalogram: a comparative digital study. J Forensic Dent Sci. 2019;11(3):118.
Article
Google Scholar
Pelowski M, Wamai RG, Wangombe J, Nyakundi H, Oduwo GO, Ngugi BK, Ogembo JG. How would children register their own births? Insights from a survey of students regarding birth registration knowledge and policy suggestions in Kenya. PLoS ONE. 2016;11(3):0149925.
Article
Google Scholar
Peterson J, Sommers I, Baskin D, Johnson D. The role and impact of forensic evidence in the criminal justice process. National Institute of Justice; 2010. p. 1–151.
Prieto JL. Evaluation of chronological age based on third molar development in the Spanish population. Int J Legal Med. 2005. https://doi.org/10.1007/s00414-005-0530-3.
Article
Google Scholar
Quinones I, Daniel B. Cell free dna as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet. 2011;6:26–30. https://doi.org/10.1016/j.fsigen.2011.01.004.
Article
CAS
Google Scholar
Razavian A, Azizpour H, Sullivan J, Carlsson S. Cnn features off-the-shelf: an astounding baseline for recognition, vol. 1403. 2014. https://doi.org/10.1109/CVPRW.2014.131
Rothe R, Timofte R, Van Gool L. Dex: deep expectation of apparent age from a single image. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops. 2015.
Ruder T, Thali M, Hatch G. Essentials of forensic post-mortem mr imaging in adults. Br J Radiol. 2013. https://doi.org/10.1259/bjr.20130567.
Article
Google Scholar
Schmeling A. Forensic age estimation. 2013. p. 133–138. https://doi.org/10.1016/B978-0-12-382165-2.00173-2.
Shim KS. Pubertal growth and epiphyseal fusion. Ann Pediatr Endocrinol Metab. 2015;20(1):8.
Article
Google Scholar
Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I. Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens Actuators B Chem. 2017;243:221–5. https://doi.org/10.1016/j.snb.2016.11.142.
Article
CAS
Google Scholar
Siegel JA, Mirakovits K. Forensic science: the basics. 2010.
Tajmir S, Lee H, Shailam R, Gale H, Nguyen J, Westra S, Lim R, Yune S, Gee M, Do S. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skelet Radiol. 2018. https://doi.org/10.1007/s00256-018-3033-2.
Article
Google Scholar
Tang K-L. International journal of offender therapy and comparative criminology. 1998.
Torres T, Ortiz JE, Fernández E, Arroyo-Pardo E, Grün R, Pérez-González A. Aspartic acid racemization as a dating tool for dentine: a reality. Quat Geochronol. 2014;22:43–56.
Article
Google Scholar
Vila Blanco N, Carreira M, Varas-Quintana P, Balsa-Castro C, Tomás Carmona I. Deep neural networks for chronological age estimation from opg images. IEEE Trans Med Imaging. 2020. https://doi.org/10.1109/TMI.2020.2968765.
Article
Google Scholar
Wiltshire P. Hair as a source of forensic evidence in murder investigations. Forensic Sci Int. 2006;163:241–8. https://doi.org/10.1016/j.forsciint.2006.06.070.
Article
Google Scholar
Witten I, Frank E, Trigg L, Hall M, Holmes G, Cunningham S. Weka: practical machine learning tools and techniques with java implementations. ICONIP/ANZIIS/ANNES. 2002.
Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam ct. Forensic Sci Int. 2006;159(Suppl 1):78–83. https://doi.org/10.1016/j.forsciint.2006.02.031.
Article
Google Scholar
Yang T-Y, Huang Y-H, Lin Y.-Y, Hsiu P-C, Chuang Y-Y. Ssr-net: a compact soft stagewise regression network for age estimation. 2018. p. 1078–1084. https://doi.org/10.24963/ijcai.2018/150.