Morgan TH. Chromosomes and heredity. Am Nat. 1910;44:449–96.
Article
Google Scholar
Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993;134:943–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994;138:1251–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doniskeller H. A genetic linkage map of the human genome. Cell. 1987;51:319–37.
Article
CAS
Google Scholar
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, et al. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics. 2014;15:708.
Article
PubMed
PubMed Central
Google Scholar
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE. 2011;6:e28334.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng C, Boer MP, van Eeuwijk FA. Construction of genetic linkage maps in multiparental populations. Genetics. 2019;212:1031–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ritter E, Gebhardt C, Salamini F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics. 1990;125:645–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grattapaglia D, Sederoff R. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994;137:1121–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize. Genetics. 1988;118:519–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beavis W, Lee M, Grant D, Hallauer A, Owens T, Katt M, et al. The influence of random mating on recombination among RFLP loci. Maize Newsl. 1992;52:52–3.
Google Scholar
Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, et al. Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol. 2002;48:453–61.
Article
PubMed
CAS
Google Scholar
Cheema J, Dicks J. Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform. 2009;10:595–608.
Article
PubMed
CAS
Google Scholar
Jünger M, Reinelt G, Rinaldi G. Chapter 4 The traveling salesman problem. In: Handbooks in Operations Research and Management Science. Elsevier; 1995. p. 225–330.
de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2004;21:1703–4.
Article
PubMed
Google Scholar
Iwata H, Ninomiya S. AntMap: Constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci. 2006;56:371–7.
Article
Google Scholar
Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4: e1000212.
Article
PubMed
PubMed Central
Google Scholar
Monroe JG, Allen ZA, Tanger P, Mullen JL, Lovell JT, Moyers BT, et al. TSPmap, a tool making use of traveling salesperson problem solvers in the efficient and accurate construction of high-density genetic linkage maps. BioData Min. 2017;10:38.
Article
PubMed
PubMed Central
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3: e3376.
Article
PubMed
PubMed Central
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6: e19379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, et al. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE. 2013;8: e58700.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B (Methodol). 1977;39:1–22.
Google Scholar
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics. 2017;33:3726–32.
Article
PubMed
CAS
Google Scholar
Castiglioni P, Pozzi C, Heun M, Terzi V, Müller KJ, Rohde W, et al. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics. 1998;149:2039–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lincoln SE, Lander ES. Systematic detection of errors in genetic linkage data. Genomics. 1992;14:604–10.
Article
PubMed
CAS
Google Scholar
Douglas JA, Boehnke M, Lange K. A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data. Am J Hum Genet. 2000;66:1287–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Os HV, Stam P, Visser RGF, Eck HJV. RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet. 2005;112:30–40.
Article
PubMed
CAS
Google Scholar
Cartwright DA, Troggio M, Velasco R, Gutin A. Genetic mapping in the presence of genotyping errors. Genetics. 2007;176:2521–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ronin YI, Mester DI, Minkov DG, Akhunov E, Korol AB. Building ultra-high density linkage maps based on efficient filtering of trustable markers. Genetics. 2017;206:1285–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, et al. A High resolution radiation hybrid map of wheat chromosome 4A. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2016.02063.
Article
PubMed
PubMed Central
Google Scholar
Sesiz U, Özkan H. A new genetic linkage map in einkorn wheat (Triticum monococcum) detects two major QTLs for heading date in chromosome 2A and 5A, probably corresponding to the photoperiod and vernalization genes. Plant Breed. 2022;141:12–25.
Article
CAS
Google Scholar
Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S. Development of a core RFLP map in maize using an immortalized F(2) population. Genetics. 1993;134:917–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Albini G, Falque M, Joets J. ActionMap: a web-based software that automates loci assignments to framework maps. Nucl Acids Res. 2003;31:3815–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falque M, Decousset L, Dervins D, Jacob A-M, Joets J, Martinant J-P, et al. Linkage mapping of 1454 new maize candidate gene loci. Genetics. 2005;170:1957–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buetow KH, Chakravarti A. Multipoint gene mapping using seriation4. I. General methods. Am J Hum Genet. 1987;41:180–8.
PubMed
PubMed Central
CAS
Google Scholar
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015;3:269–83.
Article
Google Scholar
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics. 2004;168:2169–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, et al. Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot. 2004;55:2549–57.
Article
PubMed
CAS
Google Scholar
Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, et al. Intraspecific variation of recombination rate in maize. Genome Biol. 2013;14:R103.
Article
PubMed
PubMed Central
Google Scholar
Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, et al. Reciprocal genetics: identifying QTL for general and specific combining abilities in hybrids between multiparental populations from two maize (Zea mays L.) heterotic groups. Genetics. 2017;207:1167–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, et al. Linkage analysis and association mapping QTL detection models for hybrids between multiparental populations from two heterotic groups: application to biomass production in maize (Zea mays L.). G3 Genes Genomes Genet. 2017;7:3649–57.
CAS
Google Scholar
Virlouvet L, El Hage F, Griveau Y, Jacquemot M-P, Gineau E, Baldy A, et al. Water deficit-responsive QTLs for cell wall degradability and composition in maize at silage stage. Front Plant Sci. 2019;10:488.
Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP array and a high-density, high-resolution consensus genetic map. Plant J. 2015;84:1257–73.
Article
PubMed
CAS
Google Scholar
Boutet G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, et al. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics. 2016;17:121.
Article
PubMed
PubMed Central
Google Scholar
Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51:1411–22.
Article
PubMed
CAS
Google Scholar
Carrillo-Perdomo E, Vidal A, Kreplak J, Duborjal H, Leveugle M, Duarte J, et al. Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep. 2020;10:1–14.
Article
Google Scholar