Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
Google Scholar
Mottet N, Cornford P, van den Bergh R, et al. EAU–EANM–ESTRO–ESUR–ISUP–SIOG guidelines on prostate cancer. European Association of Urology, Arnhem, The Netherlands, https://uroweb.org/wp-content/uploads/EAU-EANM-ESTRO_ESUR_ISUP_SIOG-Guidelines-on-Prostate-Cancer-2021.pdf 2021.
Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2016;40(2):244–52.
Article
Google Scholar
Kann BH, Hosny A, Aerts HJ. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39(7):916–27.
Article
CAS
Google Scholar
Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3(1):1–10.
Article
Google Scholar
Greer MD, Lay N, Shih JH, Barrett T, Bittencourt LK, Borofsky S, Kabakus I, Law YM, Marko J, Shebel H, et al. Computer-aided diagnosis prior to conventional interpretation of prostate mpMRI: an international multi-reader study. Eur Radiol. 2018;28(10):4407–17.
Article
Google Scholar
Tătaru OS, Vartolomei MD, Rassweiler JJ, Virgil O, Lucarelli G, Porpiglia F, Amparore D, Manfredi M, Carrieri G, Falagario U, et al. Artificial intelligence and machine learning in prostate cancer patient management-current trends and future perspectives. Diagnostics. 2021;11(2):354.
Article
Google Scholar
Nagpal K, Foote D, Tan F, Liu Y, Chen P-HC, Steiner DF, Manoj N, Olson N, Smith JL, Mohtashamian A, et al. Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 2020;6(9):1372–80.
Article
Google Scholar
Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, Bostwick DG, Evans AJ, Grignon DJ, Humphrey PA, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020;21(2):222–32.
Article
Google Scholar
Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6(1):1–11.
Article
Google Scholar
Lenain R, Seneviratne MG, Bozkurt S, Blayney DW, Brooks JD, Hernandez-Boussard T. Machine learning approaches for extracting stage from pathology reports in prostate cancer. Stud Health Technol Inf. 2019;264:1522.
Google Scholar
Roffman DA, Hart GR, Leapman MS, Yu JB, Guo FL, Ali I, Deng J. Development and validation of a multiparameterized artificial neural network for prostate cancer risk prediction and stratification. JCO Clin Cancer Inf. 2018;2:1–10.
Google Scholar
Lee G, Veltri RW, Zhu G, Ali S, Epstein JI, Madabhushi A. Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: preliminary findings. Eur Urol Focus. 2017;3(4–5):457–66.
Article
Google Scholar
Raciti P, Sue J, Ceballos R, Godrich R, Kunz JD, Kapur S, Reuter V, Grady L, Kanan C, Klimstra DS, et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod Pathol. 2020;33(10):2058–66.
Article
Google Scholar
Nir G, Hor S, Karimi D, Fazli L, Skinnider BF, Tavassoli P, Turbin D, Villamil CF, Wang G, Wilson RS, et al. Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med Image Anal. 2018;50:167–80.
Article
Google Scholar
Campanella G, Hanna MG, Geneslaw L, Miraflor A, Silva VWK, Busam KJ, Brogi E, Reuter VE, Klimstra DS, Fuchs TJ. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9.
Article
CAS
Google Scholar
Nir G, Karimi D, Goldenberg SL, Fazli L, Skinnider BF, Tavassoli P, Turbin D, Villamil CF, Wang G, Thompson DJ, et al. Comparison of artificial intelligence techniques to evaluate performance of a classifier for automatic grading of prostate cancer from digitized histopathologic images. JAMA Netw Open. 2019;2(3):190442.
Article
Google Scholar
Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, Olson N, Smith JL, Mohtashamian A, Wren JH, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med. 2019;2(1):1–10.
Google Scholar
Kwak JT, Hewitt SM. Multiview boosting digital pathology analysis of prostate cancer. Comput Methods Progr Biomed. 2017;142:91–9.
Article
Google Scholar
Pantanowitz L, Quiroga-Garza GM, Bien L, Heled R, Laifenfeld D, Linhart C, Sandbank J, Shach AA, Shalev V, Vecsler M, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit Health. 2020;2(8):407–16.
Article
Google Scholar
Bulten W, Balkenhol M, Belinga J-JA, Brilhante A, Çakır A, Egevad L, Eklund M, Farré X, Geronatsiou K, Molinié V, et al. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Mod Pathol. 2021;34(3):660–71.
Article
CAS
Google Scholar
Perincheri S, Levi AW, Celli R, Gershkovich P, Rimm D, Morrow JS, Rothrock B, Raciti P, Klimstra D, Sinard J. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Mod Pathol, 2021;1–8.
Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc. 2008;2008(5):4986.
Article
Google Scholar
Miettinen M, Wang Z-F, Paetau A, Tan S-H, Dobi A, Srivastava S, Sesterhenn I. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol. 2011;35(3):432.
Article
Google Scholar
Adamo P, Ladomery M. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35(4):403–14.
Article
CAS
Google Scholar
Humphrey P. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol. 2007;60(1):35–42.
Article
CAS
Google Scholar
Sabata B, Babenko B, Monroe R, Srinivas C. Automated analysis of PIN-4 stained prostate needle biopsies. In: International workshop on prostate cancer imaging, 2010;89–100. Springer
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):1–7.
Article
CAS
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46(1):389–422.
Article
Google Scholar
Cheung YK, Klotz JH. The Mann Whitney Wilcoxon distribution using linked lists. Statistica Sinica, 1997;805–813.
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annal Stat, 2001;1165–1188.
Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21(2):233–41.
Article
Google Scholar
Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, Olson N, Peng LH, Hipp JD, Stumpe MC. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019;143(7):859–68.
Article
CAS
Google Scholar
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
Article
CAS
Google Scholar
Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, Stiedl A-C, Petersen K, Reischl M, Kuefer R, Schilling D, Fend F, Kristiansen G, Meyerson M, Rubin MA, Bubendorf L, Perner S. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23(8):1061–7.
Article
CAS
Google Scholar
Perner S, Rupp NJ, Braun M, Rubin MA, Moch H, Dietel M, Wernert N, Jung K, Stephan C, Kristiansen G. Loss of SLC45A3 protein (prostein) expression in prostate cancer is associated with SLC45A3-ERG gene rearrangement and an unfavorable clinical course. Int J Cancer. 2013;132(4):807–12.
Article
CAS
Google Scholar
Dabir PD, Ottosen P, Høyer S, Hamilton-Dutoit S. Comparative analysis of three-and two-antibody cocktails to AMACR and basal cell markers for the immunohistochemical diagnosis of prostate carcinoma. Diagn Pathol. 2012;7(1):1–6.
Article
Google Scholar
Chougani S, Sunandalakshmi G, Kharidehal D, Ravisankar V, Vissa S. Utility of PIN4 cocktail antibody in the atypical foci of the prostate. Int J Clin Diagn Pathol. 2020;3(1):396–403.
Article
Google Scholar
Xu J, Stolk JA, Zhang X, Silva SJ, Houghton RL, Matsumura M, Vedvick TS, Leslie KB, Badaro R, Reed SG. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 2000;60(6):1677–82.
CAS
Google Scholar
Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, et al. P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol. 2001;25(11):1397–404.
Article
CAS
Google Scholar
O’Malley F, Grignon D, Shum D. Usefulness of immunoperoxidase staining with high-molecular-weight cytokeratin in the differential diagnosis of small-acinar lesions of the prostate gland. Virchows Archiv A. 1990;417(3):191–6.
Article
Google Scholar
Murphy A, Hughes C, Lannigan G, Sheils O, O’Leary J, Loftus B. Heterogeneous expression of α-methylacyl-CoA racemase in prostatic cancer correlates with Gleason score. Histopathology. 2007;50(2):243–51.
Article
CAS
Google Scholar
Hasan IA, Gaidan HA, Al-Kaabi MM. Diagnostic value of cytokeratin 34 beta E12 (Ck34βE12) and α-Methylacyl-CoA racemase (AMACR) immunohistochemical expression in prostatic lesions. Iran J Pathol. 2020;15(3):232.
Article
Google Scholar
Zhang C, Montironi R, MacLennan GT, Lopez-Beltran A, Li Y, Tan P-H, Wang M, Zhang S, Iczkowski KA, Cheng L. Is atypical adenomatous hyperplasia of the prostate a precursor lesion? Prostate. 2011;71(16):1746–51.
Article
CAS
Google Scholar
Guo T, Li L, Zhong Q, Rupp NJ, Charmpi K, Wong CE, Wagner U, Rueschoff JH, Jochum W, Fankhauser CD, et al. Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life Sci Allian 2018;1(2).
Gologan A, Bastacky S, McHale T, Yu J, Cai C, Monzon-Bordonaba F, Dhir R. Age-associated changes in alpha-methyl CoA racemase (AMACR) expression in nonneoplastic prostatic tissues. Am J Surg Pathol. 2005;29(11):1435–41.
Article
Google Scholar
Demircioğlu A. Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics. Insights Imaging. 2021;12(1):172.
Article
Google Scholar
Bernatz S, Ackermann J, Mandel P, Kaltenbach B, Zhdanovich Y, Harter PN, Döring C, Hammerstingl R, Bodelle B, Smith K, Bucher A, Albrecht M, Rosbach N, Basten L, Yel I, Wenzel M, Bankov K, Koch I, Chun FK-H, Köllermann J, Wild PJ, Vogl TJ. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Eur Radiol, 2020;1–13.
Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA: CreateSpace; 2009.
Google Scholar
Kluyver T, Ragan-Kelley B, Pérez F, Granger Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing Cea. Jupyter Notebooks-a publishing format for reproducible computational workflows. In: Positioning and power in academic publishing: players, agents and agendas, proceedings of the 20th confernce on electronic publishing, 2016;87–90.
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.
Article
CAS
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar