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Abstract 

Background: Single‑cell sequencing (sc‑Seq) experiments are producing increas‑
ingly large data sets. However, large data sets do not necessarily contain large amounts 
of information.

Results: Here, we formally quantify the information obtained from a sc‑Seq experi‑
ment and show that it corresponds to an intuitive notion of gene expression het‑
erogeneity. We demonstrate a natural relation between our notion of heterogeneity 
and that of cell type, decomposing heterogeneity into that component attribut‑
able to differential expression between cell types (inter‑cluster heterogeneity) 
and that remaining (intra‑cluster heterogeneity). We test our definition of heteroge‑
neity as the objective function of a clustering algorithm, and show that it is a useful 
descriptor for gene expression patterns associated with different cell types.

Conclusions: Thus, our definition of gene heterogeneity leads to a biologically mean‑
ingful notion of cell type, as groups of cells that are statistically equivalent with respect 
to their patterns of gene expression. Our measure of heterogeneity, and its decompo‑
sition into inter‑ and intra‑cluster, is non‑parametric, intrinsic, unbiased, and requires 
no additional assumptions about expression patterns. Based on this theory, we 
develop an efficient method for the automatic unsupervised clustering of cells from sc‑
Seq data, and provide an R package implementation.

Background
Advances in single-cell sequencing (sc-Seq) technologies have enabled us to profile 
thousands of cells in a single experiment [43]. In combination with advances in unsuper-
vised analysis methods, particularly specialised clustering algorithms and dimensional-
ity reduction techniques, these technologies have allowed us to dissect cellular identities 
in unprecedented detail and discover novel, functionally important, cell types [48]. The 
goal of most sc-Seq studies (except those focused on methodology development) is to 
extract biological information, often concerning the mix of cell types present in the tis-
sue sample, from the data obtained. Yet, data is not the same as information; and large, 
complex, data sets do not necessarily convey useful or usable information. Notably, cur-
rent single-cell profiling technologies typically produce noisy data for numerous techni-
cal reasons, including low capture rate, sparsity due to shallow sequencing, and batch 
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effects [17, 19]. Consequently, the relationship between biological information and sc-
Seq data is complex and incompletely understood. There is, therefore, a need for formal, 
quantitative methods to evaluate this relationship.

To address this challenge, we propose an information-theoretic framework that quan-
tifies the amount of information contained in a sc-Seq data set, and leads to a natural 
definition of gene expression heterogeneity. Our measure of gene expression heteroge-
neity decomposes into that which is explained by a given grouping of cells—a proposed 
clustering into cell types, for example—and that which remains unexplained.

Our framework differs from other approaches to heterogeneity decomposition 
(e.g. [14, 27]) by formally quantifying the information, in terms of gene expression heter-
ogeneity, gained from a sc-Seq experiment concerning the mix of cell types present. The 
resulting measure of heterogeneity, and its decomposition into inter- and intra-cluster 
heterogeneity, is non-parametric, intrinsic, unbiased, and requires no a priori assump-
tions about gene expression patterns.

Our approach is mathematically precise, biologically intuitive and computationally 
simple to implement, enabling a practitioner to quickly assess the information content of 
a sc-Seq data set, in terms of gene expression heterogeneity, identify highly informative 
genes, and determine the extent to which observed patterns of gene expression variabil-
ity are explained by the presence of a mixture of cell types in a cellular population. Fur-
thermore, we provide an efficient unsupervised clustering algorithm of cells from sc-Seq 
data based on heterogeneity and an implementation as an R package.

Results
High-throughput single-cell analysis methods, such as single-cell sequencing, typically 
view cells as the objects of study and seek to compare cell identities with each other [4, 
12, 14, 20, 24, 25, 35, 47]. However, this cell-centric view is less well suited to quantifying 
gene expression heterogeneity, which is concerned with patterns of variation that arise 
from the mixing of cell types within a population, and may vary from gene to gene. For 
instance, variance, the standard measure of heterogeneity in the cell-centric view, may 
not be informative in multi-modal distributions [39].

In the context of sc-Seq, heterogeneity results from differential expression between 
cell types. In the simplest case, where one cell type expresses a gene highly and another 
lowly, such differential expression introduces bimodality in the cell-centric expression 
distribution. In a bimodal distribution, the population mean is no longer characteristic 
of either of the two subpopulations, making variance, as a measure of the spread about 
the mean, also misleading (see Smith and MacArthur [39]).

To meet these challenges, we introduce a novel gene-centric probabilistic view that 
seeks to more formally specify what is meant by gene expression homogeneity and het-
erogeneity. We show that this gene-centric view is better suited to quantifying gene 
expression heterogeneity in the context of a multimodal population, and formalises the 
biological intuition of expression homogeneity and heterogeneity.

Quantifying gene expression heterogeneity

Consider the expression pattern of a single gene g of interest in a population of N dis-
tinct cells. Assume that in total M transcripts of g are identified in the cell population 
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(i.e. across all N cells profiled). Note that M represents the observed transcript count, 
which may differ from the true count due to technical artefacts. Now consider the 
stochastic process of assigning the M identified transcripts of gene g to the N cells 
profiled. Intuitively, the population is homogeneous with respect to expression of g if 
all the cells are statistically the same with respect to its expression. Mathematically, 
this means that the M transcripts of g will be assigned to the N cells independently 
and equiprobably—i.e.  each transcript will be assigned to each cell with probability 
1/N. Conversely, if the population is heterogeneous with respect to expression of g 
(that is, it consists of a mix of cell types, each expressing the gene differently), then 
transcripts will not be assigned uniformly, but rather will be assigned preferentially to 
distinct subsets of cells. Heterogeneity in experimentally observed patterns of expres-
sion can, therefore, be assessed in terms of deviation from this hypothetical homoge-
neous null model.

The Kullback–Leibler divergence (KLD, also known as the relative entropy) is a 
measure of the information encoded in the difference between an observed and null 
distribution [22]. In the sc-Seq context, the KLD of an experimentally observed gene 
expression distribution from the homogeneous null model, described above, meas-
ures the amount of information that is lost by assuming that the gene is homogene-
ously expressed in the sequenced cell population. We will denote this quantity I(g) 
and refer to it as the heterogeneity of g (see Fig. 1 for a schematic). Formally,

Fig. 1 An information‑theoretic view of sc‑Seq data. Transcripts, or more generally counts, of a given gene 
(shown here as horizontal bars) are assigned to cells after sequencing. If the cell population is homogeneous 
with respect to the expression of g, then the heterogeneity I(g) will be zero (top left population, I(g) = 0 ). 
In practice, the transcript assignment process is stochastic, and so there will always be some deviation 
from this ideal (bottom left population, I(g) small). (Note that the technical effects of this stochasticity on 
the information obtained may be reduced by using a shrinkage estimator to determine the distribution of 
transcripts (see “Methods” Section)). If the population is heterogeneous, then transcripts may be preferentially 
expressed in a subset of cells and the information obtained from the experiment, as measured by I(g) will 
be larger (top right population, I(g) large), reaching a maximum at log(N) , where N is the number of cells 
sequenced, when only one cell expresses the gene (bottom right population, I(g) = ln(5) ≈ 1.61 largest).
Note that the population heterogeneity I(g) is independent of any decomposition of the cell populations 
into subpopulations (shown here as yellow and purple cells, for illustration). However, given any grouping of 
the cells into subpopulations, I(g) can be formally decomposed as the sum of the heterogeneity explained 
by within and in‑between subpopulations (see “Results” Section and Fig. 3). This decomposition, but not the 
overall value of I(g), does depend on the chosen assignment of cells to subpopulations
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where xgi  is the fraction of transcripts of gene g expressed by cell i, for each 1 ≤ i ≤ N  , 
and H(g) is the entropy of the expression of g in the population (see “Methods” Section 
for full details). For technical reasons, explained in the “Methods” Section, we will use 
natural logarithms in all calculations; I(g) therefore has units of nats.

Intuitively, if the cell population is unstructured with respect to the expression of g 
(i.e.  if the cells are approximately interchangeable with respect to the expression of g) 
then the assumption of homogeneity is correct and I(g) ≈ 0 . Conversely, the theoreti-
cal maximum for I(g) is log(N ) , which is achieved when H(g) = 0 and all transcripts of 
the gene are assigned to the same cell (see Fig. 1). Note that: (1) we do not need to know, 
or model, the particular expression distribution of g in the population, so no a priori 
assumptions about expression patterns are required to calculate I(g); (2) I(g) is agnostic 
concerning missing readings or counts so long as they are distributed uniformly at ran-
dom; (3) since it quantifies the deviation from the homogeneous null model, I(g) meas-
ures the information obtained from the experiment concerning the expression of g.

In practice, I(g) is associated with cellular diversity: the more distinct cell sub-popula-
tions present in a sample, and the more those sub-populations differ from one another 
with respect to their expression of g, the larger I(g) will be. Thus, I(g) is a parsimoni-
ous measure of expression heterogeneity that makes minimal assumptions concerning 
expression patterns and, therefore, imposes minimal technical requirements on data col-
lection methodology or quality. As such, it can be used as the basis for numerous aspects 
of the sc-Seq pipeline, including feature selection and unsupervised clustering.

To validate these uses, we considered a series of single-cell RNA-sequencing bench-
marking data sets: Svensson, a technical control [42]; Tian, a mixture of three cancer-
ous cell lines [46]; Zheng, a set of FACS separated peripheral blood mononuclear cells; 
Stumpf, a sampling of cells from mouse bone marrow [41]; and the Tabula Muris, a 
mouse cell atlas with cells from twelve organs [44]. Fig. 2a–e shows plots of I(g) for each 
gene profiled in these experiments. These plots confirm the intuition that the more dis-
tinct types present in a sample, and the more those cell types differ from one another 
with respect to their gene expression patterns, the greater the population heterogeneity 
will be, as measured by I(g).

These results indicate that heterogeneity (as defined here) can be used for feature 
selection. For example, heterogeneously expressed genes can be identified by 1) order-
ing them in descending ordering by I(g), and selecting the top n (where n is user-deter-
mined) or 2) finding those genes for which I(g) greater than some user-defined threshold 
(note that 0 ≤ I(g) ≤ logN  , with I(g) ≈ 0.7 indicating the gene g is expressed in approx-
imately half of cells).

As a measure for use in feature selection, I(g) identifies gene sets largely distinct from 
those based on Highly Variable Gene selection (the mean overlap of selected genes—for 
listed data sets excluding Svensson—was 0.36, with the number of genes selected deter-
mined by scran, based on an false discovery rate threshold of 0.05). For instance, I(g) 
identifies Hbb-bs, a marker of erythrocyte maturation, as informative in the Stumpf et al. 
[41] data set (high I(g) value), whereas scran does not, instead attributing the observed 

(1)I(g) =

N

i=1

x
g
i log Nx

g
i = log(N )−H(g),
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variance to technical sources (see Additional file 1: Fig. S1)[27]. Critically, information-
theoretic heterogeneity is more mathematically precise and computationally simpler 
to implement than variance-based approaches, making no distributional assumptions 
(e.g. use of the negative binomial model) and having no free parameters to fit. Further-
more, it may be easily modified to account for the presence of multiple homogeneous 
cell subpopulations, and thereby act as a measure of cluster quality.

Inter‑cluster heterogeneity

Let S be a discrete clustering of a population of cells—i.e.  an assignment of the cells 
to a finite set of C non-intersecting sub-populations (also known as clusters). In the 
“Methods” Section, we show that I(g) can be decomposed into two parts: one part that 
quantifies the extent to which each of the sub-populations defined by S deviate from 

Fig. 2 Information‑theoretic single‑cell analysis. Recall that I(g) measures the heterogeneity of a cellular 
population with respect to the expression of g: I(g) = 0 when transcripts are expressed uniformly and 
increases as transcripts are expressed preferentially in a subset of cells, reaching a maximum I(g) = log(N) , 
where N is the number of cells sequenced, when only one cell expresses the gene. a–e Plots of expression 
heterogeneity, I(g) (normalised by the theoretical maximum, log(N) ) against log mean expression for the 
bench‑marking sc‑Seq data sets described in the main text. In each panel, each point represents a gene 
profiled. The number of genes associated with large values of I(g) increases with the number of cell types 
present in the population profiled, showing I(g) as a valid measure of cell type diversity. Panel a shows data 
from a technical control [42] (number of cell types, C = 1 ), b a mixture of three cancerous cell lines [46] 
( C = 3 ), c FACS sorted immune cells [52] ( C = 4 ), d a sample of mouse bone marrow [41] ( C = 14 ), and e 
a multi‑organ mouse cell atlas [44] ( C = 56 ). f–h Biologically meaningful cell annotations are associated 
with high inter‑cluster heterogeneity. Established cell annotations for the f Tian, g Zheng and h Stumpf 
data are associated with higher inter‑cluster heterogeneity than expected by chance (i.e., in randomly 
permuted clusters; significance is assessed using a one‑sided exact test with 104 permutations; y axes show 
log10(p+ 1) ). In all panels the red line shows p < 0.05 , false discovery rate corrected for 500 trials [2, 8]. 
Genes below this threshold are significantly different gene expression patterns across the set of identified 
cell types. i Summary statistics for the total inter‑cluster heterogeneity HS =

∑
g HS(g) based on established 

empirical and randomly permuted cell annotations ( 104 random permutations in each case). These statistics 
show the strong association of high HS with biologically meaningful groupings of cells. j A Uniform Manifold 
Approximation and Projection (UMAP) [29] plot of the top 500 genes by I(g) for the Stumpf data set; each 
point is a cell, coloured by its scEC cluster. This shows that I(g) is able to capture the continuous variation of 
developing cell types
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homogeneity, which we call the intra-cluster heterogeneity and write as hS(g) ; and one 
part that quantifies how differently the gene is expressed, in aggregate, between sub-
populations, which we call the inter-cluster heterogeneity and write as HS(g) . Namely, we 
show that

for any proposed clustering S. Thus, the information obtained from an experiment con-
cerning the expression of a gene g can be explicitly related to both local (within clus-
ter) and global (between cluster) patterns of variation, for any proposed clustering. Full 
mathematical details of this decomposition, including formulae for HS(g) and hS(g) , are 
provided in the “Methods” Section, and an illustration is given in Fig. 3. We also provide 
an R package for its calculation (see “Methods” Section).

This decomposition can be used to assess cluster quality. For a proposed cluster to 
meaningfully represent a cell type, it must be associated with differential expression of 
some subset of marker genes. Because HS(g) measures the extent to which the expres-
sion of gene g deviates from the homogeneous null model it is a simple measure of the 
extent to which g is differentially expressed between the clusters defined by S. We there-
fore expect that biologically meaningful clustering based on a marker gene g will result 
in a high value for HS(g) and (by necessity) a low value for hS(g).

This expectation is confirmed for the Tian, Zheng and Stumpf data sets for which we 
possess high-confidence a priori cell type annotations, derived either experimentally (for 
the Tian and Zheng data) or from expert annotation of a computational clustering (for 
the Stumpf data). In the set of genes most likely to be differentially expressed between 
clusters in these data sets (taken to be the top 500 genes by I(g) in each case) the majority 

(2)I(g) = HS(g)+ hS(g),

Fig. 3 Heterogeneity is additively decomposable. The heterogeneity of a population of cells (5 cells in this 
illustration) with respect to the expression of a gene g, I(g), can be decomposed into inter‑ and intra‑cluster 
heterogeneities for any proposed clustering, S (here, two subpopulations, or clusters, of 3 yellow and 2 purple 
cells). The inter‑cluster heterogeneity HS(g) is determined by independently aggregating all transcripts 
(shown as horizontal lines) associated with each sub‑population in S and then taking the KLD of the 
resulting distribution from the uniform distribution of the transcripts over C clusters. It measures the extent 
to which transcripts are uniformly assigned to clusters. The intra‑cluster heterogeneity hS(g) is determined 
by taking the weighted sum (with respect to the number of transcripts on each subpopulation) of the 
heterogeneities of each of the constituent subpopulations, considered independently. It represents the 
average heterogeneity of the proposed clusters, accounting for disparities in number of transcripts assigned. 
In this toy example, the overall population heterogeneity of gene g, I(g) = 0.55 , decomposes as the sum of 
the inter‑cluster heterogeneity HS(g) = 0.33 , plus the intra‑cluster heterogeneity hS(g) = 0.22 . The latter is 
obtained as the weighted sum (with respect to the number of transcripts in each cluster, here 2/10 = 0.2 and 
8/10 = 0.8 ) of the heterogeneities on each subpopulation. Further details and formulae are provided in the 
“Methods” Section
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are associated with substantially higher inter-cluster heterogeneity than expected by 
chance (i.e., in randomly permuted clusters). Indeed, in Tian 97.0%, in Zheng 94.4% and 
in Stumpf 99.6% of the tested genes had significantly higher inter-cluster heterogeneity 
than expected (one-sided exact test with 104 permutations, p < 0.05 , false discovery rate 
corrected for 500 trials; see Fig. 2f–h for illustration) [2, 8].

These results indicate that by simple information-theoretic reasoning, we are able to 
quantify the amount of information in the expression pattern of a single gene that is 
explained by a given clustering. However, a key strength of high-throughput single-cell 
profiling methods is that they allow the simultaneous profiling of thousands of genes in 
large cell populations.

Our information-theoretic reasoning may be extended to a high-throughput single-
cell profiling experiment by assuming that each gene is an independent source of infor-
mation and making use of the fact that information from independent sources is additive 
[37]. Thus, we can determine the total information explained by a given clustering S 
by evaluating the sum HS =

∑
g HS(g) over all genes profiled. The total information 

explained by S is a simple, easily computed measure for cluster evaluation that favours 
grouping of cells into homogeneous (with respect to gene expression) sub-populations 
and is maximised at 

∑
g I(g) if and only if the proposed clustering divides the population 

into indivisible perfectly homogeneous sub-populations and thereby accounts for all the 
heterogeneity contained in the sc-Seq data set. If so, then S is the maximum entropy par-
tition of the cell population into distinct classes, and may therefore be considered as the 
most parsimonious way of assigning cell identities.

To illustrate the association between total information explained, HS , and cluster qual-
ity, we again considered the established annotations of the Tian, Zheng and Stumpf data 
sets. As expected, in all cases the observed value of HS significantly exceeds that of all 
random label permutations (see Fig.  2i indicating that HS is strongly associated with 
cluster quality and that these benchmark cell annotations are associated with homo-
geneous cell sub-populations. Notably, this association holds true independently of 
the method used to annotate cell identities (annotations were derived from genotypic 
information for the Tian data, surface protein expression for the Zheng data, and unsu-
pervised clustering for the Stumpf data), indicating that HS provides a methodology 
agnostic, parameter-free, means to quantify cluster quality.

Unsupervised clustering

Building on this empirical association, we investigate the clustering of cells that maxim-
ises HS (and necessarily minimises hS ) as a reasonable approximation to (homogeneous) 
cell type. That is, this is the cell clustering that explains the most of the gene expression 
heterogeneity as inter-cluster variability.

We implement HS-maximisation as the objective function of an unsupervised clus-
tering method, which we call scEC (single-cell Entropic Clustering). We show that our 
method is comparable to the state-of-the-art Louvain method, and in doing so, validate 
the underlying definition of heterogeneity and homogeneous cell type.

Namely, we compare the clustering returned by scEC and the established annotations 
for the Tian, Zheng and Stumpf data sets. The resulting scEC clusterings agreed strongly 
with the established cell annotations, achieving adjusted Rand Indices (ARI) of 0.99 for 
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the Tian annotations, 0.87 for the Zheng annotations, and 0.69 for the Stumpf anno-
tations (ARIis a measure of similarity of a proposed clustering to a known clustering, 
Rand [33]). To benchmark these results we also repeated the analysis using the Louvain 
method, a leading single-cell clustering algorithm, which achieved ARIs of 0.99, 0.99 and 
0.35 for the Tian, Zheng, and Stumpf data sets respectively [3, 9, 26, 40].

The scEC objective function, HS , is naturally built by summation of gene-level meas-
urements (see “Methods” Section), so can be used to directly identify the key drivers 
of a given clustering without relying on post-hoc differential gene expression testing. To 
demonstrate this feature, we compared the inter-cluster heterogeneity values (i.e., the 
values HS(g) for each of the genes profiled) for clusters identified by scEC and by estab-
lished annotations for the Tian & Stumpf data sets (see Fig. 4).

We found that the values of HS(g) associated with scEC clusters are strongly positively 
correlated with those associated with established annotations for both the Zheng and 
Stumpf data sets (Pearson’s correlation coefficient of 0.94 for Zheng and 0.99 for Stumpf; 
see Fig.  4). Moreover, the key marker genes in each data set were found to have sig-
nificantly different expression levels across clusters, as measured by HS(g) (one-sided 
permutation test on clustering labels, 104 permutations, p < 0.05 , false discovery rate 
corrected; marker genes for Zheng: CD14, CD4, CD8 and NCAM1, Zheng et al. [52]; and 
Stumpf: Cd34, Kitl, Spi1, Gata1 and Pax5, Stumpf et al. [41]).

This concordance indicates that scEC is generally able to recapitulate known cell clus-
ters in an unbiased and parameter free way. However, despite this concordance, there 
were differences between scEC clusters and established annotations. To investigate these 
differences further we selected those genes for which the value of HS(g) differed sub-
stantially ( �HS(g) = |HscEC(g)−HKnown(g)| > 0.1 nats ) between scEC clusters and 
established annotations in each data set for further investigation.

In the Zheng data, we found that those genes with expression heterogeneity better 
explained by the scEC clustering were enriched for cell-cycle related genes (gene ontol-
ogy enrichment, p = 1.33× 10−8 , false discovery rate corrected). Conversely, those 
genes with expression heterogeneity better explained by the established annotation were 
enriched for genes involved in the immune response ( p = 1.49× 10−3 , false discovery 
rate corrected) [1, 2, 10].

Fig. 4 Comparison of inter‑cluster heterogeneity of scEC‑generated clusters versus established annotations. 
Plots of HS(g) based on an scEC‑generated clustering (x‑axis) and established annotations (y‑axis) for the a 
Zheng and b Stumpf, and c an alternative data set from Tian [41, 46, 52]. In all panels each point represents 
a gene profiled and the red line indicates HscEC (g) = HKnown(g) . For the genes below the red lines, the scEC 
clustering is better than the prior annotation at explaining the gene expression heterogeneity as inter‑cluster 
variability, and vice versa for the genes above the red line
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In the Stumpf data set, we found that those genes with expression heterogeneity better 
explained by the scEC clustering were enriched for genes involved in erythroblast dif-
ferentiation and homeostasis ( p = 1.80× 10−2 and p-value = 6.17× 10−4 respectively, 
false discovery rate corrected). Conversely, those genes with expression heterogeneity 
better explained by the established annotation were enriched for genes involved in the 
immune response ( p = 2.57× 10−18 , false discovery rate corrected). In this example, 
scEC generally identifies additional erythrocyte sub-populations while merging the 
cell sub-types of the neutrophil lineage (see Fig. 2j for illustration and Additional file 1: 
Table S1 for contingency table of cluster assignments).

Collectively, these differences reflect the preference of scEC for cellular annotations 
driven by biological processes involving larger tranches of genes. Depending on circum-
stance, this preference may be a benefit or a drawback. It is generally beneficial because 
it ensures that scEC annotations are robust to outliers (i.e.  anomalous expression pat-
terns of individual genes cannot easily distort scEC cluster assignments). Conversely, 
in circumstances in which key cellular functions are determined by a small number of 
genes, scEC may fail to disambiguate important cell populations from similar cell types. 
However, given the simplicity of the scEC methodology this issue can this issue can be 
relatively easily addressed, by adjusting the prior, as follows. In the standard formulation 
of scEC each gene contributes equally to the objective function HS =

∑
g HS(g) . This 

corresponds to assuming a uniform prior. However, alternatives may be easily consid-
ered that take into account different sources of prior knowledge. In general, each gene 
can contribute in a weighted way to the overall inter-cluster heterogeneity. In this case 
the objective becomes HS =

∑
g w(g)HS(g) , where w(g) is the weight of gene g. These 

weights can encode known biology—for example, by up-weighting known drivers of cel-
lular identities, down-weighting genes associated with housekeeping processes and/or 
the cell cycle, or by weighting genes in inverse proportion to the size (i.e. the number of 
associated genes) of their leading ontology term.

While incorporating such priors into scEC may be beneficial, defining them is a chal-
lenge and potentially introduces a source of bias into the resulting clustering and so 
should be approached with care. An alternative approach—which encodes prior infor-
mation in a data-led, rather than algorithmic way—is to use a reference data set, such as 
a cell atlas, to benchmark cell annotations (these atlases can serve as reference transcrip-
tomes, in analogy to reference genomes).

Doing so leads to a semi-supervised version of scEC, wherein we cluster a novel test 
data set based on the known clustering of a given reference data set. We detail the math-
ematics of semi-supervised clustering in the “Methods” Section, but, in short, the exten-
sion to the semi-supervised setting requires no additional mathematical machinery. 
Such mathematical simplicity affirms information theory as providing a mathematically 
precise and biological intuitive framework for cellular clustering.

As an example, we cluster the Tian data set based on a distinct data set containing the 
same three cell lines (plus two additional cell lines) [46]. The semi-supervised clustering 
strongly agreed with the established cell annotation, achieving an ARI of 0.90. Notably, 
the ARI was reduced compared with the unsupervised version due to the assignment of 
∼ 6% of cells to cell types present only in the reference data set, a disadvantage of semi-
supervised (and supervised) methods.
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Benchmarking and imputation

We benchmark scEC and state-of-the-art methods against a series of data sets consist-
ing of cells sampled from three or five distinct cancerous cell lines and sequenced using 
various technologies (CEL-Seq2, Sort-seq, 10x, Drop-seq) [15, 28, 31, 46]. We compare 
each method’s clustering against ground truth for each data set (by adjusted rand index), 
finding that scEC performs subpar to the best of existing methods [13, 21, 27, 34, 40]. 
Investigating the gene-wise contributions via HS(g) reveals that scEC-derived cluster-
ings diverge from the ground truth due to genes expressed in small numbers of cells, e.g., 
SPINK6 (difference in HscEC from ground truth of 0.23 nats; expressed in 1.6% of cells in 
the five-cell line, 10X data set; see Fig. 4c).

To protect against low cell-count genes, we adopt a data-diffusion step, imputing the 
expression value of each cell as a weighted average of itself and a small subset of cells 
with similar expression patterns (i.e., diffusion of observed expression values over a 
shared nearest-neighbours graph derived from the top 500 genes by I(g), see “Methods” 
Section) [49]. The smoothing layer shares information between genes, lessening scEC’s 
sensitivity to the expression pattern of individual genes; this raises the performance of 
scEC clustering to be on par with the state-of-the-art (see Fig. 5a).

We further benchmark scEC (with and without the imputation step) as a feature selec-
tion tool, evaluating the ability of I(g) to a priori identify differentially expressed genes, 
assuming differential expression to be the ground truth of feature selection (differen-
tially expressed genes are identified per data set via Wilcoxon Rank Sum testing, select-
ing those genes with an FDR-adjusted p-value < 0.05 in at least one cluster; Stuart et al. 
[40]). We find that, without smoothing, scEC is comparable to the state-of-the-art; with 
smoothing, scEC notably improves, substantially bettering the state-of-the-art in select-
ing differentially expressed genes from the benchmark data sets (see Fig. 5b). Notably, 
relatively few genes remain heterogeneous after the imputation step, so the imputed I(g) 

Fig. 5 Benchmarking of scEC performance in unsupervised clustering and feature selection. a Adjusted 
Rand Index of clusterings produced by specified methods against known ground truth for seven data 
sets, each consisting of three or five cancerous lines sequenced on different platforms. With an additional 
imputation step, scEC performs on par with other methods. b The percent of the top N genes by different 
feature selection metrics that are differentially expressed. Data set is Sc‑seq from three cancerous cell lines 
sequenced by Drop‑seq (with 2005 differential expressed genes identified from non‑parametric testing for 
each cell line versus the remaining; Wilcox test, fasle discovery rate corrected p‑value < 0.05 ). The greater 
ability of scEC‑impute to a priori select differentially expressed genes is repeated across each benchmark 
data set, see Additional file 1: Fig. S2. Note that the imputation step in scEC‑impute assigns many genes a 
heterogeneity I(g) of zero, resulting in a low cut‑off on total number of selectable genes
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identifies a much smaller number of genes than other methods, where an arbitrary cut-
off in selected gene number is required.

Conclusion
Traditional unsupervised clustering methods for single cell data are based on the, often 
implicit, assumption that cell types correspond to regions of high probability density 
in the joint gene expression distribution [11]. Although useful, this is not a specifically 
biological assumption (similar assumptions form the basis of numerous clustering algo-
rithms in other different disciplines) and does not have a clear biological basis. Indeed, 
this assumption does not naturally accord with biological intuition that distinct cell 
populations should be ‘homogeneous’ and cells of the same type should be functionally 
interchangeable. Here, we have taken a different approach that seeks to encode biologi-
cal intuition about population homogeneity in a mathematical formulation, drawing on 
tools from information theory.

We have proposed a formal measure of gene expression heterogeneity and shown 
that this measure captures biologically relevant heterogeneity arising from differential 
expression between established cell types. We formalised the additive decomposition 
of heterogeneity with respect to a given grouping of cells (in “Methods” Section), and 
tested the association between high inter-cluster heterogeneity and grouping by cell 
type. Finally, we used this measure as a basis of a biologically-motivated clustering pro-
cedure, which we call single-cell entropic clustering (scEC), which identifies homogene-
ous cell types. The scEC method is free of tunable hyper-parameters and its performance 
is comparable to a state-of-the-art clustering algorithm on a series of benchmark sc-Seq 
data sets, suggesting that this underlying biological basis is justified.

While our method represents a mathematically rigorous definition of heterogeneity, 
the stochasticity inherent in sc-Seq data does limit our resolution. For instance, nearly 
every gene is associated with some non-zero level of heterogeneity and, over thousands 
of genes, even low levels of stochastically-induced heterogeneity will accumulate (a ver-
sion of the so-called ‘curse of dimensionality’). This limits our ability to directly inter-
pret the genome-wide heterogeneity (e.g. the total heterogeneity of the technical control 
Svensson exceeds that of Tian, both absolute and per gene, although the trend reverses 
when excluding those genes with fewer than 100 total transcripts).

Aside from these technical limitations, our approach demonstrates the benefit of a 
biologically grounded, mathematically formal approach to understanding sc-Seq data. 
As these data sets grow in complexity and size, there will be a greater need for biological 
interpretability and mathematical rigour in analysis. We suggest information theory as 
the appropriate mathematical language for describing gene expression and its heteroge-
neity. Indeed, we anticipate that information theory will become an established part of 
the quantitative biologist’s toolkit.

Methods
Data collection

Count matrices for each data set were downloaded from their respective repositories 
(see Availability of Data and Materials). For the Zheng and Tabula Muris data sets, the 
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count matrices of the various cell types/tissues were concatenated using the Matrix 
(v1.3-2) package in R (v4.0.3) [32].

Data pre‑processing

For each data set, those genes with less than 100 total transcripts in total (i.e. across all 
cells) were excluded from further analysis. For the Zheng data set, FACS identities were 
taken from the repository metadata, with the CD4+ Helper T-cells, CD4+/CD25+ 
Regulatory T-cells, CD4+/CD45RA+/CD25- Naïve T cells, CD4+/CD45RO+ Memory 
T-cells, CD8+ Cytotoxic T cells and CD8+/CD45RA+ Naïve Cytotoxic T-cells merged 
into the single identity of T-cells.

Normalisation

Since sc-Seq data is noisy, rather than working with the experimentally observed pro-
portions of transcripts assigned to each cell, we instead adopt a Bayesian approach to 
estimate the cellular frequencies using the James–Stein estimator, as explained below, 
and use this estimator in all subsequent calculations.

We write mg
i  for the number of transcripts of gene g associated with cell i in a popu-

lation of N cells. Let 
∑N

i=1m
g
i = Mg be the total number of transcripts of gene g, and 

p
g
i = m

g
i /M

g the fraction of transcripts of gene g expressed by cell i, for each 1 ≤ i ≤ N  . 
Thus, 

∑N
i=1 p

g
i = 1 and we can think of pgi  as the probability that a randomly selected 

transcript of gene g is associated with cell i. To take under-sampling into account, we 
adjust the observed probabilities pi = p

g
i  as follows (let us drop the superscript g for sim-

plicity). We define X = Xg as the discrete random variable on the set {1, 2, . . .N } with 
probabilities

where �′ is the shrinkage intensity given by

which is the James–Stein estimator, with the uniform distribution as the shrinkage target 
[16]. Shrinkage approaches deal with under-sampling and so are able to correct for the 
substantial sparsity observed in single-cell RNA-sequencing data. The shrinkage prob-
abilities xi given in Eq. 3 are a compromise between the observed probabilities pi , which 
are unbiased but with a high variance, and the target uniform probabilities 1/N, which 
are biased but with low variance [6, 16].

Feature selection

The Shannon entropy of X is, by definition,

(3)xi = �
′
1

N
+ (1− �

′)pi,

(4)�
′
=

1−
∑N

i=1 p
2
i

(M − 1)
∑N

i=1(
1
N − pi)2

,

(5)H(X) = −

N∑

i=1

xi log xi.
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By convention, we assume that 0 · log 0 = 0 . For the logarithm, we take base e for ease in 
differentiation (see later) rather than the usual base 2 (recall that loge(x) = log2(e) log2(x) 
for all x > 0 ), and thus H(X), and I(g) below, are measured in nats.

The Shannon entropy is a measure of the uncertainty in the outcomes of the random 
variable X. It has a minimum value of zero, when xi = 1 for some i (e.g.  if the gene g 
is expressed in only one cell of the population) and has a maximum value of log(N ) , 
when xi = 1/N  for all i (e.g.  if the gene is uniformly expressed in the cell population). 
The entropy may therefore be considered as a measure of the homogeneity of expression 
of the gene g in the cell population profiled (note that the association of high entropy 
with homogeneity is counter to the usual intuition: it occurs because we are concerned 
with the entropy of the generative process of assigning transcripts to cells, rather than 
transcript count distribution in the cell population, as is more usual. A high entropy 
transcript assignment process gives rise to a sharp transcript distribution, hence its asso-
ciation with homogeneity). By contrast, the quantity log(N )−H(X) also ranges between 
zero and log(N ) , yet is minimised when the gene is homogeneously expressed and so is 
a simple measure of expression heterogeneity, which we will denote I(g). We can rewrite 
this as

The Kullback–Leibler divergence (KLD), or relative entropy, is a measure of the informa-
tion encoded in the difference between two probability distributions [22]. The relative 
entropy of a discrete probability distribution p1, . . . , pN from a discrete probability dis-
tribution q1, . . . , qN is, by definition,

with the provision that qi = 0 implies pi = 0 , and the convention that 0 · log( 00 ) = 0 . 
From this definition and Eq. 6, it is clear that our measure of heterogeneity is simply the 
relative entropy of the observed expression distribution from the uniform distribution 
U. Thus,

where U denotes to the uniform distribution on the set {1, 2, . . .N } with probabilities 
ui = 1/N  for all 1 ≤ i ≤ N .

Cluster‑level heterogeneity

A crucial property of the relative entropy is that it is additively decomposable with respect 
to arbitrary groupings [38]. Informally, this means that if we have a clustering of the cells 
into disjoint groups, then I(g) can be reconstructed from inter-cluster and intra-cluster 

(6)

I(g) = log(N )−H(X) =

N∑

i=1

xi log(N )+

N∑

i=1

xi log (xi) =

N∑

i=1

xi log (Nxi)

=

N∑

i=1

xi log

(
xi

1/N

)
.

(7)D(P||Q) =

N∑

i=1

pi log

(
pi

qi

)
,

(8)I(g) = log(N )−H(X) = D(X ||U),
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heterogeneities. Next, we formalise this additive decomposition and give a self-contained 
derivation (cf. Theil [45]).

Consider a clustering S = {S1, . . . , SC} that unambiguously assigns each cell in the sam-
ple into one of C non-intersecting sub-populations S1, . . . , SC of sizes N1, . . . ,NC . Note 
that 

∑C
k=1Nk = N  , the total number of cells. Let yk be the fraction of transcripts associ-

ated with cells in sub-population Sk , adjusted by the shrinkage estimator. That is,

with xi defined by Eq. 3. This gives another discrete random variable Y with probability 
distribution y1, . . . , yC on the set {1, 2, . . .C} . For each k = 1, . . . ,C , we can also assess 
the heterogeneity of the sub-population Sk by considering the random variable Zk with 
probability distribution zi = xi/yk on the set i ∈ Sk . Note that

so Zk is a random variable on the set (cluster) Sk.
We may rewrite I(g) in terms of Y and Zk , as follows:

(9)yk =

∑

i∈Sk

xi,

(10)
∑

i∈Xk

zi =
∑

i∈Xk

xi

yk
= yk

∑

i∈Xk

xi = 1

(11)I(g) = log (N )−

N∑

i=1

xi log

(
1

xi

)
,

(12)= log(N )−

C∑

k=1

∑

i∈Sk

xi log

(
1

xi

)

(13)= log(N )−

C∑

k=1

yk
∑

i∈Sk

xi

yk

(
log

(
1

xi/yk

)
+ log

(
1

yk

))
,

(14)
= log(N )−

C∑

k=1

yk
∑

i∈Sk

xi

yk
log

(
1

xi/yk

)

︸ ︷︷ ︸
H(Zk )

−

C∑

k=1

yk
∑

i∈Sk

xi

yk
log

(
1

yk

)
,

(15)
= log(N )−

C∑

k=1

ykH(Zk)−

C∑

k=1

log

(
1

yk

) yk︷ ︸︸ ︷∑

i∈Sk

xi

︸ ︷︷ ︸
H(Y )

,

(16)= log(N )−

C∑

k=1

ykH(Zk)−H(Y ),
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Expression A may be rewritten as:

This is the relative entropy of Y from the uniform distribution Ugroup in which 
pk = Nk/N  for k = 1, . . . ,C . Since yk is the proportion of transcripts assigned to the 
cluster Sk , it measures the deviation from the assumption that the clusters are homo-
geneous in their expression of g (i.e. each cluster expresses g at the same level). Since it 
is a measure of the extent to which the population deviates from homogeneity between 
clusters, we will term this contribution the inter-cluster heterogeneity of g with respect to 
the clustering S, denoted HS . Informally, it is a measure of the extent to which the gene g 
is differentially expressed between clusters.

Expression B may be rewritten as:

(17)
= log (N )−H(Y )−

C∑

k=1

yk log (Nk)

︸ ︷︷ ︸
A

+

C∑

k=1

yk log (Nk)−

M∑

k=1

yk H(Zk)

︸ ︷︷ ︸
B

.

(18)A = log (N )−H(Y )−

C∑

k=1

yk log (Nk),

(19)=

C∑

k=1

yk log(N )−

C∑

k=1

yk log

(
1

yk

)
−

C∑

k=1

yk log (Nk),

(20)=

C∑

k=1

yk log

(
yk

Nk/N

)
,

(21)= D(Y ||Ugroup).

(22)B =

C∑

k=1

yk log (Nk)−

C∑

k=1

yk H(Zk),

(23)=

C∑

k=1

yk
(
log (Nk)−H(Zk)

)
,

(24)=

C∑

k=1

yk
∑

i∈Sk

xi

yk
log

(
Nk

xi

yk

)
,

(25)=

C∑

k=1

yk
∑

i∈Sk

xi

yk
log

(
xi/yk

1/Nk

)
,

(26)=

C∑

k=1

yk D(Zk ||Uk).
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This is the weighted sum of the relative entropies of the empirical distributions Zk 
(i.e.  the observed gene expression distribution in group Sk ) from the uniform dis-
tribution Uk on Sk (in which pi = 1/Nk for each i ∈ Sk ). It is the deviation from the 
assumption that the population consists of a mixture of homogeneous sub-populations 
according to the clustering S (where the expectation is taken with respect to the prob-
ability measure provided by Y). Since it is a measure of the expected extent to which the 
proposed sub-populations deviate from homogeneity within clusters, we will term this 
contribution the intra-cluster heterogeneity of g with respect to S, denoted hS(g).

Taken together, these results show that I(g) can be decomposed into two well-defined 
parts that encode local and global properties of the expression distribution of g with 
respect to a given clustering S = {S1, . . . , SC}:

The relative entropy is always non-negative and hence so are HS(g) and hS(g) for any 
S. Thus, both quantities range from zero to I(g). If S places one cell in each cluster 
(i.e. C = N  ) then Zk = Uk for all k and thus hS(g) = 0 . Conversely, if S places all cells 
in one cluster (i.e. C = 1 ) then Y = US and thus HS(g) = 0 . In this case, the population 
heterogeneity is equivalent to the intra-cluster heterogeneity of the trivial clustering.

Unsupervised clustering

The above measures of heterogeneity can be easily extended from one gene to many. 
In this case, the homogeneous null model is obtained by assuming that each gene is 
expressed homogeneously and independently. Because entropy from independent 
sources is additive [7], the total heterogeneity of a single-cell RNA-sequencing data set 
under a given clustering is given by the sum:

Here HS =
∑

g HS(g) and hS =
∑

g hS(g) represent the total inter-cluster and intra-clus-
ter heterogeneity of the data with respect to a clustering S = {S1, . . . , SC}.

Naturally, we want to identify a clustering (e.g.   an assignment of cells to types) that 
produces maximally homogeneous sub-groups and thereby explains most of the expres-
sion heterogeneity for most genes in terms of inter-cluster heterogeneity. Mathemati-
cally, this means we want to find a clustering S that maximises HS or, equivalently, 
minimises hS . A brute force approach is not feasible, as the number of partitions of a set 
with n elements into two or more subsets grows exponentially with n.

To approach the problem we therefore converted the problem from one of assigning 
discrete identities (i.e., a hard clustering problem) to one of assigning continuous identi-
ties (i.e., a fuzzy clustering problem). The advantage of this approach is that it defines 
the problem in terms of a continuous, differentiable objective function which can be 
approached with more efficient optimisation routines.

Fuzzy clustering

We adopt a fuzzy conception of clustering in which cells are assigned to C (possibly) over-
lapping, fuzzy clusters, S1, . . . , SC . Each cell i has C corresponding membership functions 

(27)I(g) = A+ B = HS(g)+ hS(g).

(28)I =
∑

g

I(g) =
∑

g

HS(g)+
∑

g

hS(g) = HS + hS .
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µik ∈ [0, 1] for k = 1, 2, . . . ,C , which assess the probability that cell i belongs to cluster Sk . 
Thus,

Our information-theoretic framework can be adapted to this fuzzy setting. Population 
heterogeneity, I(g), is independent of the chosen clustering, so it remains unaffected by 
the adoption of fuzzy clusters, i.e. the total gene expression heterogeneity is unaffected 
by the choice of discrete or fuzzy cluster memberships. For the calculations of inter-clus-
ter and intra-cluster heterogeneities, we extend the discrete random variables Y g and 
Z
g
k to the fuzzy setting, where Y g now measures the expression distribution of the gene 

g across the C fuzzy clusters, and Zg
k measures the expression distribution of the gene g 

within fuzzy cluster Sk , as follows.
We define the discrete random variable Y g on the set of fuzzy clusters S = {S1, . . . , SC} 

with probabilities ygk given by

We also define, for each Sk ∈ S , a discrete random variable Zg
k on the set of cells, 

i = 1, . . . ,N  , with probabilities zgik given by,

We can rewrite I(g) (which is independent of the clustering) in terms of Y g and Zg
k (which 

depend on the clustering) as

where,

and

Note that Eq. 33 is the entropy of the random variable Y g , however H(Z
g
k ) is not quite 

the entropy of Zg
k (there is a missing 1/µik factor inside the logarithm).

From Eq. 32, we can obtain a second decomposition,

(29)
C∑

k=1

µik = 1 with µik ≥ 0,

(30)y
g
k =

N∑

i=1

µik x
g
i .

(31)z
g
ik = µik

x
g
i

y
g
k

.

(32)I(g) = log(N )−H(Y g )−

C∑

k=1

y
g
kH(Z

g
k ),

(33)H(Y g ) =

C∑

k=1

y
g
k log

(
1

y
g
k

)

(34)H(Z
g
k ) =

N∑

i=1

µik
x
g
i

y
g
k

log

(
1

x
g
i /y

g
k

)
.

(35)I(g) = H(g)+ h(g)
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where

Here H(g) and h(g) represent the inter-cluster heterogeneity and intra-cluster hetero-
geneity of gene g with respect to the fuzzy clustering S. Equation  36 is also the KLD 
of the distribution of Y g from the uniform distribution Ugroup given by uk = Nk/N  for 
k = 1, 2, . . . ,C (note that 

∑C
k=1 uk = 1 ). Similarly, Eq. 37 is the KLD of the distribution 

of Zg from the uniform distribution Uk given by pi = µik/Nk for i = 1, 2, . . . ,N .
Either HS =

∑
g HS(g) or hS =

∑
g hS(g) can serve as our objective function, f, for 

optimisation: optimising either quantity simultaneously identifies the clustering with 
the greatest heterogeneity between clusters (i.e.  the greatest differential gene expres-
sion between clusters) and the least heterogeneity within clusters (i.e. in which the cells 
within each cluster are closest to being interchangeable with respect to their patterns of 
gene expression).

Choosing inter-cluster heterogeneity HS , we solve the optimisation problem

where

using the limited-memory, box constrained BFGS (L-BFGS-B) optimisation algorithm 
from the Python3 (v3.8.2) package SciPy (v1.5.3) [5, 50, 51, 53].

The L-BFGS-B algorithm is an efficient non-linear local optimisation method devel-
oped for solving large, dense problems such as this [53] but its speed and the quality 
of the solution produced depends on the availability of an explicit formulation of the 
gradient of the objective function. Therefore, we derive the required gradient by partially 
differentiating the total inter-cluster heterogeneity, HS , with respect to fuzzy cluster 
membership, i.e. the N · C membership functions µrs ( 1 ≤ r ≤ N , 1 ≤ s ≤ C).

Beginning by differentiating individual elements of f with respect to µrs , from Eqs. 30 
and 38, we have

(36)HS(g) =

C∑

k=1

y
g
k log

(
y
g
k

Nk/N

)
,

(37)hS(g) =

C∑

k=1

y
g
k

N∑

i=1

µik x
g
i

y
g
k

log

(
x
g
i /y

g
k

1/Nk

)
,

(38)Nk =

N∑

i=1

µik .

(39)max
S

HS ,

(40)HS =

G∑

g=1

HS(g) =

G∑

g=1

C∑

k=1

y
g
k log

(
y
g
k

Nk/N

)
,

(41)
∂

∂µrs

(
y
g
k

)
=

{
x
g
r k = s
0 k �= s
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Using the product, chain and quotient rules, we can differentiate the g-summand, call it 
f g
(
= HS(g)

)
 , of the objective function f:

The membership functions µrs are not independent, since 
∑C

k=1 µik = 1 for all i, by 
Eq. 29. To incorporate this constraint, and the constraint µik ≥ 0 for all i, k, we introduce 
variables wik given by

and make the objective function f a function of the wik . By the chain rule,

Determining ∂µrs
∂wij

 , let us write Mi =
∑C

l=1 e
wil ; then, Eq.  50 can be written as 

µik = ewik /Mi . By the quotient rule,

(42)
∂

∂µrs
(Nk) =

{
1 k = s
0 k �= s

(43)
∂f g

∂µrs
=

∂

∂µrs

(
C∑

k=1

y
g
k log

(
y
g
k

Nk/N

))

(44)=

C∑

k=1

∂

∂µrs

(
y
g
k

)
log

(
y
g
k

Nk/N

)
+

C∑

k=1

y
g
k

∂

∂µrs

(
log

(
y
g
k

Nk/N

))

(45)= x
g
r log

(
y
g
s

Ns/N

)
+

C∑

k=1

y
g
k

Nk/N

y
g
k

∂

∂µrs

(
y
g
k

Nk/N

)

(46)= x
g
r log

(
y
g
s

Ns/N

)
+

C∑

k=1

Nk

N
N

∂

∂µrs

(
y
g
k

Nk

)

(47)= x
g
r log

(
y
g
s

Ns/N

)
+

C∑

k=1

Nk
1

N 2
k

(
∂

∂µrs

(
y
g
k

)
Nk − y

g
k

∂

∂µrs
(Nk)

)

(48)= x
g
r log

(
y
g
s

Ns/N

)
+

1

Ns

(
x
g
r Ns − y

g
s

)

(49)= x
g
r

(
log

(
y
g
s

Ns

)
+ log(N )+ 1

)
−

y
g
s

Ns
.

(50)µik =
ewik

∑C
l=1 e

wil

,

(51)
∂f

∂wij
=

N∑

r=1

C∑

s=1

∂f

∂µrs

∂µrs

∂wij
.
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Numerical optimisation

The objective function HS , as formulated in Eq. 40, was optimised with respect to clus-
ter memberships, µik using the L-BFGS-B optimisation algorithm from the Python3 
(v3.8.2) package SciPy (v1.5.3) [5, 50, 51], with random initial starting points (initial 
cluster memberships were defined by random sampling of a uniform distribution cen-
tred on zero). The gradient function, as formulated in Eq. 51, was supplied to the optimi-
sation routine.

Because initial conditions are randomly generated, and the L-BFGS-B algorithm only 
identifies local optima, the specific clustering found by the algorithm may depend on 
the choice of initial vector [5, 53]. To make the implementation robust a multi-start pro-
cess is adopted, in which the optimisation is repeated multiple times with different initial 
vectors, and the clustering S with the greatest inter-cluster heterogeneity HS is chosen.

Permutation testing

Annotations for the Tian, Zheng and Stumpf data were taken from the respective reposi-
tories’ metadata. Random clusterings were generated by randomly permuting the estab-
lished annotations 10,000 times each. Comparison of true and shuffled annotations was 
formulated as an exact one-side hypothesis test, generating exact p-values [8]. We con-
trol the false discovery rate arising from multiple testing for each data set using the R 
function p.adjust [2].

Clustering comparison

We compare our clustering results to two standard clustering methods: Seurat (v3) 
clustering (Louvain community detection), and UMAP projection, both with default 
parameters, with the exception of the resolution, as described in Stuart et al. [40] [3, 29]. 
The Adjusted Rand Index (ARI) was calculated for each data set using the associated 
function in the R package mclust (v5.4.7) [33, 36].

Semi‑supervised classification

Consider a pair of count matrices, T = {Tref ,Ttest} , where one count matrix, which we 
term the reference, Tref  , has a known cluster structure (and therefore each cell has a 
unique, discrete cell type classification). The goal of reference mapping is to classify cells 
in the test matrix, Ttest , based on cellular classifications of the reference matrix.

We normalise each count matrix separately as described in Normalisation, using the 
James–Stein-type estimator so that 

∑
i∈Tk

x
g
i = 1 [16]. We assume that the same set of 

genes are profiled in Tref  and Ttest and derive the normalised combined count matrix, 
Xmix , via the weighted concatenation:

(52)
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where Nref  is the number of cells in the reference data set, Ntest is the number of cells in 
the unclassified data set, and N is the total number of cells across both data sets.

As in the unsupervised setting, we cluster the combined data set, Xmix , by maximising 
HS of the combined data set with respect to a fuzzy clustering S, see Eq. 56. However, 
unlike in the unsupervised setting, a subset of cellular cluster memberships are known a 
priori. Let R = R1, . . . ,RC be the discrete clustering of the reference data set, with clus-
ter sizes n1, . . . , nC , where 

∑C
k=1 nk = Nref  . As the cluster identities of cells originating 

from the reference data set are fixed, each cluster in the reference data set constitutes a 
subset of a cluster in the mixed data set, Rk ∈ Sk , where S = S1, . . . , SC is the clustering 
of the mixed data set. Note that number of clusters in the reference and in the combined 
data set is the same, i.e. C.

Based on the co-mixing of known and unknown cellular identities, ygk and Nk of the 
combined data set Xmix are given by

Based on these formulations of ygk and Nk , the definition of HS follows as before,

Similarly, the derivative of HS follows as before, except that the membership function, 
µrs , is only defined with respect to cells of the test data set, 1 ≤ r ≤ Ntest & 1 ≤ i ≤ Ntest,

Numerical optimisation follows as in the unsupervised setting, using the L-BFGS-B algo-
rithm, except that the known cellular identities of the reference mean that only a single 
run of the algorithm is required, i.e. no multiple starts.

Imputation

We rely on a cell-by-cell adjacency matrix for imputation, encoding which cells have 
similar gene expression profiles. Specifically, we use the shared-nearest-neighbours 
matrix produced by Seurat, using default settings [40].

We begin with the expression matrix X, keeping only the top G genes by I(g) (default 
is 500). Then, briefly, the Seurat method follows the following steps: data is scaled and 
normalised using a variance stabilising transform; the transformed data then undergoes 
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N
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principal components, and a cell-cell Euclidean distance matrix is calculated on the first 
10 principal components. Next, a k-nearest-neighbours graph is constructed, where k 
is by default 20; a shared nearest-neighbours graph is constructed by taking the Jaccard 
Index of the overlap in neighbourhoods of each pair of cells [18].

From this adjacency matrix, A, we compute the imputed data via a one-hop smoothing 
operator:

where Q is the row-normalised stochastic matrix, i.e. 
∑

j Qij = 1 ∀ i ∈ 1, . . . ,N  , 
Xg

= (X
g
j ) is the g-column of X, and X̃g

= (X̃
g
i ) are the imputed values for gene g [30]. 

The imputed expression value of gene g in cell i is a weighted mean of observed expres-
sion values in cell i and its neighbourhood in A. This is an example of a data diffusion 
imputation, first applied to Sc-seq data in Van Dijk et al. [49].

The vector X̃g can then be used in place of Xg in any of the above described work. 
In the main text, we select the top 500 genes by I(g) based on X̃g , before clustering on 
X̃g . Accordingly, use of the imputed expression matrix requires two rounds of feature 
selection: first in the construction of the adjacency matrix, A, then for the use of X̃g in 
clustering.

For the benchmarking of the imputation, we recapitulated the set of data sets and 
methods tested in Tian et al. [46]. However, we were unable to rerun RCA [23].

Abbreviations
ARI  Adjusted rand index
KLD  Kullback–Leibler divergence
scEC  Single‑cell entropic clustering
scSeq  Single‑cell sequencing

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 023‑ 05424‑8.

Additional file 1. Two additional figures and one additional table: Expression of Hbb-bs in the Stumpf data set 
(Supplementary Figure 1); Feature selection benchmarking of scEC and scEC‑impute (Supplementary Figure 2); and 
Contingency table between cell annotations provided in the Stumpf data set and scEC labels.

Acknowledgements
We thank P. Stumpf, J. Egan and B. Kitching‑Morley for helpful discussions.

Author contributions
Conceptualization, MJC, RSG, BDM; Software, MJC; Investigation, MJC, JF, RJSG and BDM; Writing—original draft, MJC, 
RSG and BDM; Writing—review and editing, MJC, JF, RSG and BDM; Visualization, MJC; Supervision, RSG and BDM. All 
authors have seen and approved the manuscript.

Funding
RSG and BDM were supported by The Alan Turing Institute under the EPSRC Grant EP/N510129/1. RSG was supported by 
the Alan Turing Institute—Roche strategic partnership under the project ‘Structured missingness in heterogeneous data’.

Availability of data and materials
The Svensson data was downloaded as file “svensson_chromium_control.h5a” from https:// data. calte ch. edu/ recor ds/ 
1264 The Tian data sets were downloaded from https:// github. com/ LuyiT ian/ sc_ mixol ogy The Zheng data was down‑
loaded as set of files “Gene / cell matrix (filtered)” in section “Single Cell 3’ Paper: Zheng et al. 2017” from https:// suppo rt. 

(58)Qij =
Aij∑
j Aij

(59)X̃
g
i =

∑

j

QijX
g
j ,

https://doi.org/10.1186/s12859-023-05424-8
https://data.caltech.edu/records/1264
https://data.caltech.edu/records/1264
https://github.com/LuyiTian/sc_mixology
https://support.10xgenomics.com/single-cell-gene-expression/datasets


Page 23 of 24Casey et al. BMC Bioinformatics          (2023) 24:311  

10xge nomics. com/ single‑ cell‑ gene‑ expre ssion/ datas ets The Stumpf data was downloaded as file “RData.zip” from http:// 
dx. doi. org/ 10. 17632/ csvm3 kpkxd.1 The Tabula Muris data was downloaded as set of files “Single‑cell RNA‑seq data from 
microfluidic emulsion (v2)” from https:// tabula‑ muris. ds. czbio hub. org

Code availability
An R package for the implementation of the described methods is available on github https:// github. com/ mjcasy/ scEC

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Received: 22 March 2022   Accepted: 18 July 2023

References
 1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene 

ontology: tool for the unification of biology. Nate Genet. 2000;25(1):25–9.
 2. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. 

J R Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
 3. Blondel VD, Guillaume J‑L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: 

Theory Exp. 2008;2008(10):P10008.
 4. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, 

et al. Accounting for technical noise in single‑cell rna‑seq experiments. Nat Meth. 2013;10(11):1093–5.
 5. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Com‑

put. 1995;16(5):1190–208.
 6. Chan TE, Stumpf MP, Babtie AC. Gene regulatory network inference from single‑cell data using multivariate informa‑

tion measures. Cell Syst. 2017;5(3):251–67.
 7. Cover TM, Thomas JA. Elements of information theory. Wiley; 2012.
 8. Fisher R. Statistical methods for research workers. Gyan Books; 2017.
 9. Freytag S, Tian L, Lönnstedt I, Ng M, Bahlo M. Comparison of clustering tools in r for medium‑sized 10x genomics 

single‑cell RNA‑sequencing data. F1000Research. 2018;7:1297.
 10. Consortium Gene Ontology. The gene ontology resource: enriching a gold mine. Nucl Acids Res. 

2021;49(D1):D325–34.
 11. Greulich P, Smith R, MacArthur BD. The physics of cell fate. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V, editors. 

Phenotypic switching. NewYork: Academic Press; 2020. p. 189–206.
 12. Grün D, Kester L. Van, Oudenaarden A. Validation of noise models for single‑cell transcriptomics. Nat Meth. 

2014;11(6):637–40.
 13. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H. Van, Oudenaarden A. Single‑cell messen‑

ger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251–5.
 14. Hafemeister C, Satija R. Normalization and variance stabilization of single‑cell RNA‑seq data using regularized nega‑

tive binomial regression. Genome Biol. 2019;20(1):1–15.
 15. Hashimshony T, Senderovich N, Avital G, Klochendler A, De Leeuw Y, Anavy L, Gennert D, Li S, Livak KJ, Rozenblatt‑

Rosen O, et al. Cel‑seq2: sensitive highly‑multiplexed single‑cell RNA‑seq. Genome Biol. 2016;17:1–7.
 16. Hausser J, Strimmer K. Entropy inference and the James–Stein estimator, with application to nonlinear gene associa‑

tion networks. J Mach Learn Res. 2009;10(7):1469–84.
 17. Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single‑cell RNA‑sequencing 

experiments. Biostatistics. 2018;19(4):562–78.
 18. Jaccard P. The distribution of the flora in the alpine zone. 1. NewPhytol. 1912;11(2):37–50.
 19. Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single‑cell differential expression analysis. Nat Meth. 

2014;11(7):740–2.
 20. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single‑cell RNA‑seq data. Nat Rev 

Genet. 2019;20(5):273–82.
 21. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, et al. 

Sc3: consensus clustering of single‑cell RNA‑seq data. Nat Meth. 2017;14(5):483–6.
 22. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22(1):79–86.
 23. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS, et al. Reference component 

analysis of single‑cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 
2017;49(5):708–18.

 24. Liu B, Li C, Li Z, Wang D, Ren X, Zhang Z. An entropy‑based metric for assessing the purity of single cell populations. 
Nat Commun. 2020;11(1):1–13.

https://support.10xgenomics.com/single-cell-gene-expression/datasets
http://dx.doi.org/10.17632/csvm3kpkxd.1
http://dx.doi.org/10.17632/csvm3kpkxd.1
https://tabula-muris.ds.czbiohub.org
https://github.com/mjcasy/scEC


Page 24 of 24Casey et al. BMC Bioinformatics          (2023) 24:311 

 25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‑seq data with deseq2. 
Genome Biol. 2014;15(12):1–21.

 26. Luecken MD, Theis FJ. Current best practices in single‑cell RNA‑seq analysis: a tutorial. Mol Syst Biol. 2019;15(6): 
e8746.

 27. Lun AT, McCarthy DJ, Marioni JC. A step‑by‑step workflow for low‑level analysis of single‑cell RNA‑seq data with 
bioconductor. F1000Research. 2016;5:2122.

 28. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck 
EM, et al. Highly parallel genome‑wide expression profiling of individual cells using nanoliter droplets. Cell. 
2015;161(5):1202–14.

 29. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction, arXiv 
preprint arXiv: 1802. 03426. 2018

 30. Ortega A. Introduction to graph signal processing. Cambridge University Press; 2022.
 31. Peterman N, Levine E. Sort‑seq under the hood: implications of design choices on large‑scale characterization of 

sequence‑function relations. BMC Genom. 2016;17:1–17.
 32. R Core Team R: a language and environment for statistical computing, R foundation for statistical computing, 

Vienna. https:// www.R‑ proje ct. org/, 2020
 33. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66(336):846–50.
 34. Risso D, Purvis L, Fletcher RB, Das D, Ngai J, Dudoit S, Purdom E. Clusterexperiment and rsec: a bioconductor 

package and framework for clustering of single‑cell and other large gene expression datasets. PLoS Comput Biol. 
2018;14(9): e1006378.

 35. Robinson MD, McCarthy DJ, Smyth GK. edger: a bioconductor package for differential expression analysis of digital 
gene expression data. Bioinformatics. 2010;26(1):139–40.

 36. Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering, classification and density estimation using gaussian 
finite mixture models. R J. 2016;8(1):289.

 37. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423.
 38. Shorrocks AF. The class of additively decomposable inequality measures. Econom: J Econom Soc. 1980;48(3):613–25.
 39. Smith RC, MacArthur BD. Information‑theoretic approaches to understanding stem cell variability. Curr Stem Cell 

Rep. 2017;3(3):225–31.
 40. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, Hao Y, Stoeckius M, Smibert P, Satija R. Com‑

prehensive integration of single‑cell data. Cell. 2019;177(7):1888–902.
 41. Stumpf PS, Du X, Imanishi H, Kunisaki Y, Semba Y, Noble T, Smith RC, Rose‑Zerili M, West JJ, Oreffo RO, et al. Transfer 

learning efficiently maps bone marrow cell types from mouse to human using single‑cell RNA sequencing. Com‑
mun Biol. 2020;3(1):1–11.

 42. Svensson V, Natarajan KN, Ly L‑H, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A, Teichmann SA. Power analysis of 
single‑cell RNA‑sequencing experiments. Nat Meth. 2017;14(4):381.

 43. Svensson V, Vento‑Tormo R, Teichmann SA. Exponential scaling of single‑cell RNA‑seq in the past decade. Nat 
Protoc. 2018;13(4):599–604.

 44. Consortium Tabula Muris. Single‑cell transcriptomics of 20 mouse organs creates a tabula muris. Nature. 
2018;562(7727):367.

 45. Theil H. Economics and Information, theory studies in mathematical and managerial economics. North‑Holland 
Publishing Company; 1967.

 46. Tian L, Dong X, Freytag S, Lê Cao K‑A, Su S, JalalAbadi A, Amann‑Zalcenstein D, Weber TS, Seidi A, Jabbari JS, 
et al. Benchmarking single cell RNA‑sequencing analysis pipelines using mixture control experiments. Nat Meth. 
2019;16(6):479–87.

 47. Townes FW, Hicks SC, Aryee MJ, Irizarry RA. Feature selection and dimension reduction for single‑cell RNA‑seq based 
on a multinomial model. Genome Biol. 2019;20(1):1–16.

 48. Trapnell C. Defining cell types and states with single‑cell genomics. Genome Res. 2015;25(10):1491–8.
 49. Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, et al. Recov‑

ering gene interactions from single‑cell data using data diffusion. Cell. 2018;174(3):716–29.
 50. Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley: CreateSpace; 2009.
 51. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, 

Bright J, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nat Meth. 2020;17(3):261–72.
 52. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. Mas‑

sively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):1–12.
 53. Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L‑BFGS‑B: Fortran subroutines for large‑scale bound‑constrained 

optimization. ACM Trans Math Softw (TOMS). 1997;23(4):550–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1802.03426
https://www.R-project.org/

	An information-theoretic approach to single cell sequencing analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Quantifying gene expression heterogeneity
	Inter-cluster heterogeneity
	Unsupervised clustering
	Benchmarking and imputation

	Conclusion
	Methods
	Data collection
	Data pre-processing
	Normalisation
	Feature selection
	Cluster-level heterogeneity
	Unsupervised clustering
	Fuzzy clustering
	Numerical optimisation
	Permutation testing
	Clustering comparison

	Semi-supervised classification
	Imputation

	Anchor 26
	Acknowledgements
	References


