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Abstract 

Existing methods for generating synthetic genotype data are ill-suited 
for replicating the effects of assortative mating (AM). We propose rb_dplr, a novel 
and computationally efficient algorithm for generating high-dimensional binary 
random variates that effectively recapitulates AM-induced genetic architectures 
using the Bahadur order-2 approximation of the multivariate Bernoulli distribution. 
The rBahadur R library is available through the Comprehensive R Archive Network 
at https://​CRAN.R-​proje​ct.​org/​packa​ge=​rBaha​dur.
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Background
The simulation of realistic genotype/phenotype data is a fundamental tool in statistical 
genetics and is essential for the development of robust statistical methods for the 
analysis of genome-wide data. As such, much prior effort has focused on generating 
synthetic data that recapitulate salient characteristics of genetic marker data, including 
local linkage disequilibrium (LD) structure induced by variable recombination rates 
[1–3], relationships between local LD structure and allelic effects [4], and the many 
consequences of drift, admixture, and geographic stratification [5, 6].

Despite these advances, existing methods are ill-suited for generating synthetic 
genotype/phenotype data reflecting the consequences of recent assortative mating (AM); 
in contrast to the effects of recombination, which yields banded covariance structures, 
AM induces dense covariance structures reflecting sign-consistent dependence among 
all causal variants across the genome [7, 8]. On the other hand, there is substantial recent 
evidence that AM is widespread [8–10] and complicates the interpretation of many 
commonly applied methods in statistical genetics, including heritability estimation 
[11], genetic correlation estimation [8, 12], and Mendelian randomization [13]. Efficient 
simulation methods for generating high-dimensional genotype/phenotype data 
congruent with the consequences of AM will be critical to the development of robust 
analytic tools.
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SNP haplotypes subject to AM-induced long-range dependencies can be represented 
mathematically by the m-dimensional multivariate Bernoulli (MVB) distribution [14], 
which is challenging to sample from; existing methods require O(m2) or more operations 
to draw a vector of m haplotypes [1, 3, 15, 16] (see Fig.  1), which becomes infeasible 
in high dimensions. As such, existing methods for synthesizing AM-consistent marker 
data at scale obviate this problem by generating genotype / phenotype data assuming 
random mating and subsequently proceeding through multiple generations of forward-
time simulation, complete with mating and meioses [2, 8, 11]. However, these methods 
require repeatedly shuffling the elements of large arrays and simulating the genotypes of 
a large number of individuals to obtain a relatively small sample of unrelated individuals, 
making them cumbersome in the context of methods development.

In the current manuscript, we introduce a novel collection of efficient methods for 
directly sampling high-dimensional MVB random variables satisfying particular moment 
conditions (i.e., admitting a Bahadur order-2 representation; [17]). In particular, we 
propose the rb_dplr algorithm, which exploits the diagonal-plus-low-rank correlation 
structure induced by AM to generate MVB samples using only O(m) operations. We then 
present numerical experiments demonstrating that the proposed methods outperform 
existing direct sampling methods and verify that they faithfully represent the effects 
of AM by comparing results to forward-time simulations. We provide these methods, 
together with a collection of utilities for characterizing the equilibrium distribution of 
haplotypes under AM, in rBahadur, an open-source library for the R programming 
language.

Implementation
Overview of the rBahadur library

The rBahadur library consists of three component collections: First, we provide two 
general-purpose MVB samplers, rb_unstr and rb_dplr, the implementation of 
which we discuss in the following section. Second, we provide utilities for modeling 

Fig. 1  a Cross-method comparison of single-threaded wall time for generating m/4 samples from the 
m-dimensional MVB distribution on a log-log scale. The proposed rb_dplr algorithm scales linearly in 
sample size and problem dimension. Both rb_dplr and the unstructured variant rb_unstr outperform 
existing methods including haplosim [3], three methods implemented by Kruppa et al. (kruppa-*) [1], 
and GenOrd [15] Solid lines reflect linear splines with fixed knots fitted to numerical experiment results 
and dashed lines reflect extrapolations. b Drawing genotypes directly from their equilibrium distribution 
under AM. Comparison of heritabilities in synthetic genotype/phenotype data generated using rb_dplr to 
sample from the appropriate MVB distribution, versus the forward-time approach of Border et al. [8]. Best-fit 
lines and standard-errors summarize variation across 100 replicates with 2000 haploid causal variants for 8000 
individuals, for phenotypes with panmictic heritability cross-mate phenotypic correlation both fixed to 0.5
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equilibrium AM, including a set of convenience functions for computing equilibrium 
parameters given initial conditions and for parametrizing the corresponding MVB 
distribution. Third, we provide a routine for end-to-end simulation that combines the 
first two components to efficiently construct equilibrium genotypes and phenotypes 
given population parameters.

Bahadur approach to the MVB distribution

Suppose X1, . . . ,Xm are Bernoulli random variables with means µi := E[Xi] . 
When the variables are independent, the distribution of (X1, . . . ,Xm) is simply 
p[1](x1, . . . , xm) := m

i=1 µ
xi
i (1− µi)

1−xi , but this is not the case in general. Bahadur [17] 
showed that the distribution of an MVB takes the form

where x = (x1, . . . , xm) . The function f in (1) is defined as

where zi := (xi − µi)/
√
µi(1− µi) and ri1...in := E[zi1 · · · zin ] . The means (µi) and mixed 

moments (rij), (rijk) , and so forth, characterize the MVB and are comprised of 2m − 1 
parameters. This exponential dependence on m makes working with general MVBs 
challenging.

We consider Bahadur order-2 approximations to the distribution in (1); i.e., we assume 
that ri1···in = 0 for n ≥ 3 . Thus, the order-2 MVB distribution is fully characterized by 
its means (µi) and correlations (rij) . rBahadur provides two methods for sampling 
from this distribution. The first algorithm (rb_unstr) can handle generic correlation 
matrices and requires O(m2) operations to sample from the m-dimensional MVB. The 
second algorithm (rb_dplr) is developed specifically for the case when the correlation 
matrix is diagonal-plus-low-rank (DPLR; i.e., (rij) = D+UU

T where D is diagonal 
and U is m× c for some c ≪ m ) and requires O(mc) operations. Both methods sample 
the entries of the random vector sequentially: First, a realization of X1 is drawn. Then, 
subsequent variables Xn are drawn conditionally on the realization of the previously 
drawn variables X1, . . . ,Xn−1 for 2 ≤ n ≤ m . For further details, see Additional file 1.

Equilibrium distribution of causal variants under AM

Here we demonstrate how the DPLR order-2 MVB distribution is used to model the 
consequences of assortment. Consider the equilibrium distribution of haploid causal 
variants X1, . . . ,Xm with allele frequencies µ1, . . . ,µm under primary-phenotypic 
assortative mating for an additive phenotype with panmictic heritability h20 , panmictic 
genetic variance σ 2

g ,0 = h20 , and cross-mate phenotype correlation r. Following Nagylaki 
[7], the equilibrium heritability is

(1)p(x) = p[1](x)f (x),

(2)f (x) = 1+
∑

i<j

rijzizj +
∑

i<j<k

rijkzizjzk + · · · + r1···mz1 · · · zm,

h2∞ =
1

2r

(

(1− h20)
−1 −

√

(1− h20)
−2 − 4rh20(1− h20)

−1

)

,
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and the equilibrium cross-mate genetic correlation and genetic variance are respectively 
rg ,∞ = r · h2∞ and σ 2

g ,∞ = σ 2
g ,0/(1− rg ,∞) . Additionally, we denote the equilibrium 

phenotypic variance σ 2
y,∞ and the standardized haploid effects β.

Assuming casual variants are unlinked at panmixis, the correlation matrix of causal 
haploid variants will be of the form R = D+ φφT where, following Border et  al. [11], 
φ : Rm → R

m is a function of the standardized haploid effects β given elementwise by

and D is the diagonal matrix with entries Dkk = 1− φ2
k . Setting U = φ allows drawing 

haploid causal variants from the equilibrium distribution under AM via rb_dplr.
The rBahadur library includes functions for computing equilibrium parameters 

under this model: vg_eq, h2_eq, and rg_eq compute equilibrium parameters given the 
initial conditions σ 2

g ,0 , h
2
0 , and r. Finally, am_covariance_structure parametrizes 

the corresponding DPLR MVB distribution for a specified set of allele frequencies, 
causal effects, and initial conditions, by using (3) to compute φ.

Simulating genotype/phenotype data with rBahadur

rBahadur provides the am_simulate routine for simplified end-to-end simulation 
of genotype/phenotype data. am_simulate requires the user to specify the panmictic 
heritability and mating correlation parameters, as well as the desired number of diploid 
causal variants and number of simulation replicates (i.e., individuals). am_simulate 
returns genotypes, phenotypes, as well as additional architectural components, 
including the allele frequencies, allele-substitution effects, and the heritable component 
of the generated phenotype. We provide a vignette illustrating usage of am_simulate 
in further detail in Additional file 1.

Numerical experiments

Figure  1a compares the time required to generate m binary haplotypes for n = m/4 
individuals under the equilibrium AM model, with h20 = r = 0.5 , across existing and 
proposed methods. The proposed rb_dplr algorithm scales linearly in sample size 
and problem dimension. Both rb_dplr and the unstructured variant rb_unstr 
outperform existing methods including haplosim [3], three methods implemented by 
Kruppa et  al. (kruppa-*) [1], and GenOrd [15]. Results for the mipfp library [16], 
which had exponential time complexity, are omitted.

Figure  1b compares heritabilities associated with genotype / phenotype data as 
generated with rb_dplr under the equilibrium AM model versus those achieved after 
of up to 20 generations of the corresponding forward-time procedure, as implemented 
by Border et  al. [8], across 100 replicates. Results were consistent across methods 
(comparing rb_dplr h2 to mean h2 values across forward-time generations 16-20, 
Welch’s t(99) = 0.84 , p = 0.40 ). Best-fit lines and standard-errors summarize variation 
across 100 replicates with 2000 haploid causal variants for 8000 individuals. Here, 
rb_dplr provides a direct and efficient alternative to forward time approaches that can 
be readily incorporated into sensitivity analysis and methods development pipelines.

(3)φk =
√

σ 2
y,∞µk(1− µk)/(8β

2
k r)

(

√

4β2
k r/σ

2
y,∞ + (1− rg ,∞)2 − (1− rg ,∞)

)

,
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Conclusions
Given that AM is both widespread [10, 11] and consequential for the interpretation 
of marker-based estimators [8, 11, 13], it is crucial that statistical geneticists are able 
to perturb random-mating assumptions when developing and evaluating methods. 
To this end, we have developed the rBahadur library to efficiently sample haploid 
causal variants under AM-induced genetic architectures. The software is open-source 
and freely available through Comprehensive R Archive Network at https://​CRAN.R-​
proje​ct.​org/​packa​ge=​rBaha​dur.

Our approach is limited by the requirement that the target distribution admits a 
second-order Bahadur approximation (i.e., there is a valid probability distribution 
with the specified allele frequencies and correlations). For far apart causal variants, 
this is of little consequence as the true values of moments up to order four are 
expected to be smaller than their sampling variances unless n ≫ m , which is rarely 
the case in practice [11]. However, this limits applications to complex correlation 
structures involving both strong local LD and AM-induced global dependence. We 
address this by ensuring the simulation functions in rBahadur fail transparently 
in such cases and provide a vignette demonstrating how rBahadur can be used in 
conjunction with reference haplotypes to overcome this limitation in Additional file 1.
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