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Abstract 

Background: Two types of non-invasive, radiation-free, and inexpensive imaging 
technologies that are widely employed in medical applications are ultrasound (US) 
and infrared thermography (IRT). The ultrasound image obtained by ultrasound imag-
ing primarily expresses the size, shape, contour boundary, echo, and other morphologi-
cal information of the lesion, while the infrared thermal image obtained by infrared 
thermography imaging primarily describes its thermodynamic function information. 
Although distinguishing between benign and malignant thyroid nodules requires 
both morphological and functional information, present deep learning models are 
only based on US images, making it possible that some malignant nodules with insig-
nificant morphological changes but significant functional changes will go undetected.

Results: Given the US and IRT images present thyroid nodules through distinct 
modalities, we proposed an Adaptive multi-modal Hybrid (AmmH) classification model 
that can leverage the amalgamation of these two image types to achieve superior 
classification performance. The AmmH approach involves the construction of a hybrid 
single-modal encoder module for each modal data, which facilitates the extraction 
of both local and global features by integrating a CNN module and a Transformer mod-
ule. The extracted features from the two modalities are then weighted adaptively using 
an adaptive modality-weight generation network and fused using an adaptive cross-
modal encoder module. The fused features are subsequently utilized for the classifica-
tion of thyroid nodules through the use of MLP. On the collected dataset, our AmmH 
model respectively achieved 97.17% and 97.38% of F1 and F2 scores, which signifi-
cantly outperformed the single-modal models. The results of four ablation experiments 
further show the superiority of our proposed method.

Conclusions: The proposed multi-modal model extracts features from various modal 
images, thereby enhancing the comprehensiveness of thyroid nodules descrip-
tions. The adaptive modality-weight generation network enables adaptive atten-
tion to different modalities, facilitating the fusion of features using adaptive weights 
through the adaptive cross-modal encoder. Consequently, the model has demon-
strated promising classification performance, indicating its potential as a non-invasive, 
radiation-free, and cost-effective screening tool for distinguishing between benign 
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and malignant thyroid nodules. The source code is available at https:// github. com/ 
wuliZ N2020/ AmmH.

Keywords: Multi-modal learning, Adaptive weight, Thyroid nodule, Infrared thermal 
image, Ultrasound image

Background
Thyroid nodules are common thyroid diseases. According to epidemiological data, the 
incidence of thyroid nodules in the population is 19–68%, of which about 5–15% are 
malignant [1]. Patients diagnosed with benign nodules typically require only periodic 
monitoring, whereas those with malignant nodules often necessitate additional inter-
ventions. Therefore, the precise differentiation between benign and malignant nodules is 
crucial for effective clinical treatment planning.

In clinical practice, US is generally used for the preliminary grading of thyroid nod-
ules because of its non-invasive, non-radiation, and low-cost characteristics [2]. Patients 
with TI-RADS [3] grading 4 or higher ultrasonic examination results are generally con-
sidered to be at risk of malignancy, and it is recommended that they undergo further 
invasive fine-needle biopsy for diagnostic purposes. Traditionally, the precise grading of 
thyroid nodules has relied heavily on the expertise of sonographers, who must dynami-
cally observe various morphological and functional characteristics, including size, shape, 
internal structure, blood flow distribution, and hemodynamics. This approach is both 
inefficient and subjective. In contrast, machine learning based methods are efficient and 
objective, and have been widely used in fields such as disease diagnosis [4] and medical 
image analysis [5]. Compared with traditional machine learning methods, deep learn-
ing has the advantage of automatic learning feature representation, thus has been widely 
used in the medical field such as [6]. In fact, some deep learning based methods have 
been proposed to assist in the diagnosis of thyroid nodules by automatically classify-
ing their US images. For example, Soon et al. [7] employed a transfer learning method 
with the pre-trained VGG16 model for classifying thyroid US images. Qing et  al. [8] 
employed the Inception-v3 method to distinguish benign and malignant thyroid nodules 
based on US images. However, the static US images can only illustrate the size, shape, 
contour boundary, echo, and other morphological information of the nodules, incapable 
of describing the functional information such as hemodynamics and thermodynamics. 
In recent years, the application of the IRT technique, which has the same non-invasive, 
non-radiative, and low-cost advantage as US, for the detection of thyroid diseases has 
also been investigated by researchers. Ahdy et al. [9] detected and displayed the relative 
skin temperature variations of patients suffering from thyroid disorders using the IRT 
technique. Their analysis results showed that the IRT technique can be used to char-
acterize thyroid nodular disease by quantifying the spatial and temporal abnormali-
ties in skin blood perfusion. Farshad et al. [10] studied the thyroid IRT and confirmed 
the higher temperatures of thyroid tumors in comparison to the thyroid gland, which 
appears as hot spots and disturbs the symmetry of the thermogram. Based on this, they 
succeeded in detecting the edges of the malignant thyroid tumors in the IRT images. 
Viviane et al. [11] also analyzed the thermal behavior of thyroid nodules through IRT, 
showing the feasibility of classifying thyroid nodules using IRT images. However, the 
IRT images can only describe the functional information of thyroid nodules, failing to 
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describe their morphological information. While both morphological and functional 
information are crucial for distinguishing between benign and malignant thyroid nod-
ules, neither US nor IRT images alone provide a comprehensive representation of all 
aspects of the nodules. Currently, the development of equipment capable of capturing 
both morphological and functional information through US and IRT imaging remains 
challenging due to limitations in imaging sensors. Given the semantic correlation and 
complementary information provided by two distinct sources of images, it is necessary 
to employ the emerging multi-modal learning technique to achieve a more precise clas-
sification of thyroid nodules. However, as far as we know, there have been few such stud-
ies published.

The fusion of multi-modal data has been the research focus in the field of multi-modal 
learning, through which the model can benefit from different data modalities to learn 
complementary and supplementary information. In recent years, multi-modal learning 
by fusing different kinds of medical images has been used to facilitate clinical diagnosis 
and surgical navigation [12]. For instance, Ravi et al. [13] and Bhuyan et al. [6] proposed 
deep learning-based approaches for COVID-19 classification using both CT scan and 
chest X-ray images. Razzaghi et  al. [14] proposed a multi-modal deep transfer learn-
ing for MRI brain image analysis. Li et  al. [15] proposed a multi-modal fusion model 
based on a dense convolutional network with dual attention for PET and MRI images. 
Wang et al. [16] proposed a multi-modal fusion and calibration network for 3D pancreas 
tumor segmentation via PET and CT images. Drawing inspiration from these studies, we 
posit that the integration of IRT and US images through multi-modal learning can yield 
not only functional information from the IRT but also morphological information from 
the US. Consequently, we propose to combine both the US and IRT images to build the 
classification model of thyroid nodules based on the multi-modal learning in this paper.

Generally, there are three kinds of fusion strategies in multi-modal learning: input-
level fusion, feature-level fusion, and decision-level fusion [17]. We use the feature-level 
fusion approach in this study to acquire complementary information from different 
image modalities. That is, we first extract comprehensive features from each modal data 
(intra-modal feature extraction) and then integrate them (inter-modal feature fusion) 
to build the classification model. Consequently, the initial step is to extract features to 
represent the original data of each modality. Convolutional neural networks (CNNs) 
have been extensively employed for feature extraction from input data, including medi-
cal images, since their birth, and have demonstrated remarkable proficiency in feature 
extraction. Nevertheless, the inability to learn long-range dependencies among features 
restricts CNNs from extracting only local features, which may not adequately represent 
the original data. To address this issue, many researchers have proposed combining other 
kinds of network structures to compensate for the shortcomings of CNNs. For example, 
Yan et al. [18] proposed a CNN-RNN (Recurrent Neural Network) hybrid network for 
breast cancer histopathological image classification. Ketu et al. [19] proposed a CNN-
LSTM (Long Short-Term Memory) hybrid network for the prediction of the COVID-19 
epidemic across India. Compared to RNNs and LSTM, the recently proposed Trans-
former networks are more powerful to extract information on long-range dependencies 
thanks to the use of the self-attention mechanism [20–23]. Moreover, Transformers have 
the advantages of parallelism and scalability and are not prone to gradient vanishing, 
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making them perform excellently in many tasks. Therefore, in this paper, we present to 
combine a CNN and a Transformer to build a hybrid encoder (i.e., intra-modal feature 
extractor) for each imaging modality, to make full use of the advantages of CNNs and 
Transformers. In each hybrid encoder, a CNN is bridged to a Transformer through a fea-
ture embedding layer, allowing the encoder to comprehensively extract features from the 
corresponding modality of images.

In order to integrate features extracted from different modalities, there have several 
fusion strategies have been proposed, such as direct concatenating [24], fusing via the 
Kronecker product [25], and fusing based on orthogonalization loss [26]. However, most 
existing methods ignore the semantic correlation between different modalities, which 
may not effectively integrate information between different modalities and may intro-
duce noise. In order to fuse complementary features of multi-modal images while retain-
ing the unique features of different modal images, some recent researches introduce the 
modality-level cross-connection so that the semantic correlation between modalities 
can also be involved in the process of fusion [16, 27]. Nevertheless, they weigh different 
modalities equally in all cases (patients), which is inconsistent with the fact that different 
modalities may weigh differently in different cases. For example, the US images may con-
tain more helpful information than the IRT images for some patients, while the opposite 
for others. Therefore, in this paper, we not only build an adaptive cross-modal encoder 
based on Transformer to effectively integrate correlation between different modali-
ties but also design an adaptive modality-weight generation network to learn different 
weighting schemes for different cases.

To sum up, we present a novel Adaptive multi-modal Hybrid (AmmH) model to com-
bine the US and IRT images for the classification of thyroid nodules. AmmH is designed 
according to the feature-level fusion strategy, therefore it mainly contains two feature 
extraction modules, a feature fusion module, and a classification module. The feature 
extraction modules are responsible for extracting features from US and IRT images 
respectively. The feature fusion module is adaptively integrate the features of US and IRT 
images to generate the comprehensive representation of a case which is then classified 
by the classification module. The main contributions of our work are as follows: 

(1) As far as we know, this work is the first attempt to combine US and IRT images for 
the classification of thyroid nodules. IRT and US images respectively characterize 
the functional and the morphological information which complements each other, 
so integrating these two kinds of images is expected to improve the classification 
performance of thyroid nodules.

(2) We design a hybrid intra-modal encoder network in which the CNN is bridged to 
the Transformer via a feature embedding layer, so that the encoder has the advan-
tages of both CNN and Transformer encoders, having more powerful feature 
extracting capability than pure CNN or Transformer encoder.

(3) We design an adaptive feature fusion module consisting of a cross-modal encoder 
network and an adaptive weight generation network. The cross-modal encoder 
network can facilitate the integration of correlation between different modalities, 
reducing the impact of redundant and noisy features on the classification of thy-
roid nodules. Furthermore, the adaptive weight generation network can adaptively 
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adjust the weights of two modal images for different cases so that our AmmH 
model can adaptively pay attention to different image modalities in the classifica-
tion of thyroid nodules.

The remainder of this paper is organized as follows. First, we describe the details of the 
proposed AmmH model in the “Method” section. Then we introduce the data collection 
and the experiments in the “Materials and Experiments” section. Finally, we conclude 
our work in the “Conclusion” section.

Method
As mentioned above, using multi-modal learning methods to jointly exploit informa-
tion from multiple modalities to classify thyroid nodules has rarely been investigated. 
Given the significance of both morphological information represented by US images and 
functional information described by IRT images in distinguishing thyroid nodules, we 
proposed an adaptive multi-modal hybrid model, AmmH, to integrate the US and IRT 
images for classifying the thyroid nodules. AmmH adopts the feature-level fusion strat-
egy to implement the multi-modal learning task. In this section, we first introduced the 
overview of the AmmH model. Then we described the design of its feature extraction 
module and the feature fusion module.

Overview of the AmmH model

Figure  1 depicts the architecture of the AmmH model that consists of three main 
modules: the feature extraction module, the feature fusion module, and the classifica-
tion module. The feature extraction module is designed as a two-branch network. Each 
branch is a Hybrid Single-Modal Encoder (HSME) for extracting features from the US 

Adaptive Cross-Modal Encoder

MLP Head

Conv

Encoder

Conv

Encoder

F
eatu

re

E
m

b
ed

d
in

g

In
tra-m

o
d

al

T
ran

sfo
rm

er

E
n

co
d

er

In
tra-m

o
d
al

T
ran

sfo
rm

er

E
n
co

d
er

F
eatu

re

E
m

b
ed

d
in

g

PE

PE

Hybrid Single-Modal Encoder (US)

C

Elem-wise sum

Elem-wise multipy

Concat

Benign or Maligant

*

In
ter-m

o
d

al

T
ran

sfo
rm

er

E
n
co

d
er

PE

**
Hybrid Single-Modal Encoder (IRT)

Adaptive Modality-Weight Generation Network

S
o

ftm
ax

C

*

PE

Weights of modality

cls token

Position encoding

Fig. 1 Overview of the Proposed AmmH Model. AmmH is composed of two hybrid single-modal encoders, 
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or IRT images respectively. The feature fusion module consists of an Adaptive Modality-
Weight Generation (AMWG) network and an Adaptive Cross-Modal Encoder (ACME). 
Based on the fact that the importance of the morphological and functional features for 
thyroid nodules classification may be different in different cases, the AMWG network 
is designed for adaptively generating the weights of two modalities, and the ACME is 
designed as the Transformer encoder to adaptively fuse the features of different modali-
ties. In AmmH, we paid little attention to the design of the classification module and 
simply used the MultiLayer Perceptron (MLP) Head to classify the benign and malignant 
thyroid nodules.

As illustrated in Fig. 1, the AmmH model simultaneously accepts the US image IUS and 
IRT image IIRT of the same patient case. The corresponding branch of HSME respec-
tively extracts features from IUS and IIRT , then yields the high-level semantic features 
FUS and FIRT . which are fused in the ACME network. FUS and FIRT are also fed into the 
AMWG network to generate the weights of two modalities, denoted as ωUS and ωIRT , so 
that ACME adaptively weighs different modalities in different cases. The fused features 
are sent to the MLP Head for the classification of thyroid nodules. The model uses a 
standard cross-entropy loss function to achieve end-to-end optimization in this work.

Feature extraction module

The feature extraction module is designed as a two-branch network. Each branch is an 
HSME block with the same structure and is responsible for extracting both the local 
and global features of the corresponding modal images. The HSME is the combina-
tion of CNN and Transformer encoders and consists of three components: the intra-
modal Convolutional encoder to extract the local features, the intra-modal Transformer 
encoder to extract the global features, and the feature embedding layer to bridge two 
encoders.

Intra‑modal convolutional encoder

The intra-modal Convolutional encoder is used to generate feature maps for the US 
or IRT images. Though there are many CNNs that can be used as the Convolutional 
encoder, we chose the ResNet18 for the purpose in the current work due to the power-
ful feature extraction capability of the ResNet [28]. Concretely, we built the intra-modal 
Convolutional encoder by removing the final global pooling and full connection layers 
in the ResNet18. The feature maps produced by the intra-modal Convolutional encoder 
can be formulated as:

where m ∈ {US, IRT } . Im ∈ RC∗H∗W  , F local
m ∈ RC ′∗H ′∗W ′.

Feature embedding layer

In order to bridge the intra-modal Convolutional encoder and the intra-modal Trans-
former encoder, we designed the feature embedding layer to process the feature maps 
obtained from the intra-modal Convolutional encoder. Using the obtained feature maps, 
we first performed a deconvolution operation to determine the size and number of 
feature maps needed. Due to Transformer’s sequence-to-sequence processing, the 2D 

(1)F local
m = EConv

m (Im)
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feature maps are flattened into 1D ones. However, the ?attening operation loses spatial 
information, which is critical to image classification. To address this issue, we introduced 
the learnable position embeddings PEUS and PEIRT to supplement the flattened features 
via element-wise summation, which is formulated as:

where m ∈ {US, IRT } . F token
m  , PEm ∈ RC ′′∗H ′′W ′′.

Intra‑modal transformer encoder

The Convolutional encoder fails to build the long-range dependency within each modal-
ity because of some induction bias such as the translational invariance. To better capture 
the global information between feature maps, we designed the intra-modal Transformer 
encoder based on the ViT[21] to establish the long-range dependencies. The encoder 
consists of four intra-modal Transformer blocks, each block contains a Self-Attention 
(SA) [20], and a MLP. In the SA, each token does an attentional calculation with all sur-
rounding tokens, so that the long-range dependencies can be captured. The SA can be 
formulated as:

where m ∈ {US, IRT } . WQ
m  , WK

m  and WV
m  are learnable parameters. LN (·) is Layer Nor-

malization [29]. dk is the dimension of Km . The MLP is a 2-layer Linear with GELU [30].
Therefore, the features with the local context information and global context informa-

tion within each modality produced by the HSME can be defined as:

where m ∈ {US, IRT } . Fm ∈ RC ′′∗H ′′W ′′.

Feature fusion module

The feature fusion module aims to adaptively establish long-range correlation across modal-
ities for modality-invariant features with global semantics. It efficiently integrates infor-
mation from different modalities and learns adaptively for different cases, giving different 
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weighing schemes for different cases. This module is composed of an adaptive modality-
weight generation network and an adaptive cross-modal encoder network.

Adaptive modality‑weight generation network

In an ideal multi-modal model, though all available information from different modali-
ties would be used to make the prediction, the model should be able to adaptively empha-
size one modality over another according to the specific patient case. To achieve this, we 
designed the AMWG network to adaptively generate the optimal weights of different 
modalities for accurate classification. AMWG accepts the high-level semantic features 
generated by the HSME network instead of the raw images in order to reduce the repeti-
tive computation and accelerate convergence. Moreover, using the features as the inputs 
also forces the AMWG to allocate weights explicitly based on discriminative features and 
to coordinate parameters updates across modules. In this work, the AMWG is designed as 
an MLP containing three linear layers with the ReLU activation. It should be noticed that 
the AMWG network is part of the multi-modal learning framework (Fig. 1), therefore the 
weight parameters of AMWG, together with those of other parts of the multi-modal learn-
ing framework, are dynamically updated by minimizing the loss during the model training 
process. Based on the weight parameters in AMWG, we can generate the modality weight 
for each modality using the following equation:

where [·, ·] is concatenation operation. The purpose of using the softmax function 
here is to ensure that the sum of different modality feature weights must be 1, i.e., 
ωUS + ωIRT = 1.

Adaptive cross‑modal encoder

We implemented the ACME also based on the Transformer blocks in ViT [21]. To distin-
guish from the intra-modal Transformer in HSME, it is called as inter-modal Transformer 
here. The inter-modal Transformer encoder combines the features generated from two 
HSME encoders by weighted summation as the multi-modal token. Moreover, a cls token 
[31] is introduced for the final classification of thyroid nodules. Therefore, the final input 
F token of the inter-modal Transformer encoder is defined as:

where F token ∈ R(c
′′+1)∗H ′′W ′′ , PE is learnable position embedding.

Besides, in order to allow the model to learn information from both modalities in sev-
eral different representation subspaces for better information interaction, we used a Multi-
headed Self-Attention (MSA) mechanism [20] in the inter-modal Transformer encoder, 
which is different from the intra-modal Transformer block where the SA mechanism is 
used. The MSA is defined as:

(9)(ωUS ,ωIRT ) = softmax(MLPAMWG([FUS , FIRT ]))

(10)F token = [cls token, wUS ∗ FUS + wIRT ∗ FIRT ]+ PE

(11)Qi = WQi

LN

(

F token
)
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where the head number is 8 in our implementation. The final output cls token is sent to 
the MLP Head for the final thyroid nodules classification. Figure 2 shows the difference 
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between the intra-modal Transformer and the inter-modal Transformer. Figure 2a illus-
trates the intra-modal Transformer, and Fig. 2b illustrates the inter-modal Transformer. 
The main difference between them is the attention mechanism. The self-attention is used 
in the intra-modal Transformer and multi-headed attention is used in the inter-modal 
Transformer. In addition, a cls token(*) is introduced in the inter-modal Transformer for 
the final classification of thyroid nodules.

Materials and experiments
Data collection

To the best of our knowledge, there are no similar studies that combine US images with 
IRT images to assist in the diagnosis of thyroid nodules. Since we can not find any public 
dataset that contains both US and IRT images of the thyroid nodules, we constructed a 
dataset, Th-USIRT, to validate our proposed method.

The study subjects were patients who underwent thyroid ultrasonography at the part-
ner hospital from October 2021 to September 2022. Besides the US images, we also 
acquired the IRT images of their neck areas using the HB-T-1 Thermal Imaging System. 
The device uses an uncooled infrared focal detector with 320× 240 pixel chip, tempera-
ture resolution of 0.08 ◦C , and temperature range of 20–40 ◦C . The subject entered the 
examination room, removed the wearing apparel, exposed the neck, and sat quietly for 
3–5 min on the chair to sufficiently dissipate the heat, keep quiet, and stable the tem-
perature of the area to be examined. The examiner acquired the IRT image by placing 
the device’s probe squarely on the subject’s neck so that the neck is in the middle of the 
image, with the upper screenshot of the image at ear level (containing the entire neck) 
and the lower screenshot of the image at shoulder level. As soon as the IRT images had 
been acquired, the subjects would undergo thyroid ultrasonography and the US images 
can also be collected. Figure 3 illustrates the flow chart of the image acquisition.

Fig. 3 Flow Chart of the Image Acquisition. a Illustrates the flow of IRT image collection and b Illustrates the 
flow of US image collection
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In this study, we have collected the thyroid US and IRT images of 2864 patients having 
the diagnostic results. The resolution of each US image is 512× 512 and the resolution 
of each IRT image is 320× 240 . According to the diagnostic results, the thyroid nodules 
with TI-RADS [3] grading 4 and above are considered as malignant and others are con-
sidered as benign. As a result, 1536 pairs of US and IRT images are labeled as benign, 
and 1328 pairs are labeled as malignant. All image pairs and their labels were collected 
to form the dataset Th-USIRT. Figure 4 exemplifies the US and IRT images in the data-
set. The dataset has been randomly divided into the training, validation, and test sets by 
the ratio of 6:2:2. Table 1 presents the number of image pairs in different sets.

Experimental settings

To evaluate our method, we performed two kinds of experiments based on the Th-
USIRT dataset. It should be noted that all images of both modalities are uniformly 
reshaped to 224 × 224 in all experiments. First, we compared the AmmH with several 
deep learning methods that have been applied to assist in the diagnosis of thyroid nod-
ules. Now that the compared methods are all single-modal, we trained and tested two 
models for each of these methods separately using the US images and the IRT images. 
While we trained and tested our method using two kinds of images. Then, we conducted 
four kinds of ablation studies to confirm the advantages of different modules in our pro-
posed AmmH model. Finally, we conducted an analysis of the complexity of our models.

All experiments were conducted on a computer configured with 8 GeForce RT, and 
X 3090Ti GPUs and all models were implemented in PyTorch. As mentioned above, we 
selected ResNet [28] as the CNN block and ViT [21] as the Transformer blocks in the 

case1 case2 case3 case4

IRT

US

Benign cases Malignant cases

Fig. 4 Example Images in the Th-USIRT Dataset. The left are cases of benign nodules and the right are cases 
of malignant nodules

Table 1 The number of image pairs in different sets

Training set Validation set Test set Total number

Benign 922 307 307 1536

Malignant 798 265 265 1328
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current implementation of our AmmH model, since they are the most popular models 
for image classification tasks. In this work, we did not pay much attention to the design 
of the loss function and simply adopted the commonly used cross-entropy loss func-
tion though other loss functions can also be considered. During the training process, 
the Adam optimizer was utilized to minimize the categorical cross-entropy loss. Other 
parameter settings are revealed in Table 2. The Accuracy(ACC), Sensitivity (SEN), Preci-
sion (PRE), Specificity (SPE), F1-score, and F2-score [32] were utilized to evaluate the 
performance of the models.

Comparison AmmH with other methods

In this experiment, we compared our AmmH with four single-modal deep learning 
approaches that had successfully been applied to assist in the diagnosis of thyroid nod-
ules: VGG16, Inception V3, ResNet18, and ViT. Each of the single-modal methods was 
trained respectively using the US and IRT images to generate two classification models. 
Whereas our multi-modal AmmH was trained with US and IRT images at the same time 
to generate one classification model. The comparison results of nine models are listed 
in Table 3. In this table, we can see that the classification performance of our AmmH 
model is significantly better than the others.

We think the reasons why AmmH is superior to others can be attributed to the fol-
lowing three aspects. The first one is the use of multi-modal data. Data from different 
modalities can provide information from different perspectives, which complement each 
other so that the fused information is more comprehensive to represent the thyroid nod-
ules. The second one is the design of the HSME block in the feature extraction module. 

Table 2 Configuration of the training parameters of the model

Param Value

Batch size 32

Epoch 200

Initial learning rate/min learning rate 1e−3 / 1e−4

Learning decay type cos

β (0.9, 0.999)

weight_decay 5e−4

Table 3 Comparison of methods for classification of thyroid nodules

Bold values indicate the best results achieved in each indicator

Row Modality Model ACC PRE SEN SPE F1 F2

1 US VGG 0.6838 0.7410 0.4881 0.8527 0.5885 0.7419

2 US ResNet 0.7570 0.8316 0.5962 0.8958 0.6945 0.8140

3 US Inception 0.7298 0.6744 0.8056 0.6644 0.7342 0.6885

4 US ViT 0.7395 0.7710 0.6226 0.8404 0.6889 0.7854

5 IRT VGG 0.7188 0.7705 0.5595 0.8562 0.6483 0.7741

6 IRT ResNet 0.7098 0.7463 0.5660 0.8339 0.6438 0.7618

7 IRT Inception 0.7482 0.7366 0.7103 0.7808 0.7232 0.7154

8 IRT ViT 0.7378 0.7138 0.7245 0.7492 0.7191 0.7441

9(ours) US + IRT AmmH 0.9738 0.9699 0.9736 0.9739 0.9717 0.9738
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HSME combines the advantages of CNNs for local feature extraction and Transformer 
for global feature modeling, which enables our model to extract more powerful fea-
tures from the data. The third one is the design of the feature fusion module containing 
ACME and AMWG. ACME uses the Transformer to fuse features from different modal-
ities to enable the learning of correlations of different modalities, reducing the noise and 
redundancy. Moreover, the AMWG network allows our model to pay adaptive attention 
to different modalities according to different cases so that the personalized feature rep-
resentations that are most conducive to the classification of their thyroid nodules can be 
learned.

Ablation study on multi‑modal learning

In order to investigate whether the multi-modal learning strategy to combine the US and 
IRT images helps to improve the classification performance, we constructed three multi-
modal models based on our AmmH. Specifically, we removed the ACME module as 
well as the AMWG network block in AmmH. The features extracted from two branches 
were directly concatenated for the downstream classification task. We call this modi-
fied model as “Hybrid w/o ACME”. We further modified the HSME block in the “Hybrid 
w/o ACME” model by cutting off one of the intra-modal Transformer encoder and 
intra-modal Convolutional encoder to get two multi-modal models with pure CNN and 
Transformer, called “ResNet w/o AMCE” and “ViT w/o AMCE” respectively. Besides, 
we deleted one HSME branch and the feature fusion module in “Hybrid w/o ACME” to 
obtain a single-modal model, called “Hybrid”. Accordingly, we compared ResNet with 
“ResNet w/o AMCE”, ViT with “ViT w/o AMCE”, and “Hybrid” with ‘Hybrid w/o ACME”. 
The comparing results are presented in Table 4.

According to Table  4, it is obvious that the multi-modal learning models based on 
the same network backbone have significantly higher classification performance than 
the single-modal learning models, which demonstrates that the joint consideration of 
US and IRT images using multi-modal learning is necessary to accurately classify the 
thyroid nodules. The US images reflect the morphological characteristics of the thy-
roid nodules in the area of the lesion while the IRT images reflect the thermodynamic 
characteristics of the thyroid nodules. Multi-modal learning helps to extract different 

Table 4 Comparison of classification performance of different models with difference encoders

Bold values indicate the best results achieved in each indicator

“w/o” indicates “without”; “ACME” indicates the adaptive cross-modal encoder

Modality Model ACC PRE SEN SPE F1 F2

US ResNet 0.7570 0.8316 0.5962 0.8958 0.6945 0.8140

IRT ResNet 0.7098 0.7463 0.5660 0.8339 0.6438 0.7618

US+IRT ResNet w/o AMCE 0.8444 0.9000 0.7472 0.9283 0.8165 0.8854
US ViT 0.7395 0.7710 0.6226 0.8404 0.6889 0.7854

IRT ViT 0.7378 0.7138 0.7245 0.7492 0.7191 0.7441

US+IRT ViT w/o AMCE 0.8357 0.8178 0.8302 0.8404 0.8240 0.8383
US Hybrid 0.7640 0.8009 0.6528 0.8599 0.7193 0.8086

IRT Hybrid 0.7483 0.8040 0.6038 0.8730 0.6897 0.8015

US+IRT Hybrid w/o AMCE 0.8636 0.8880 0.8075 0.9121 0.8458 0.8891
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features from different views, contributing to the diversity of data representation and the 
strong discriminative abilities of the models. Furthermore, when the data of one modal-
ity is disturbed by noise, the information provided by other modalities can assist in cor-
recting it and the integrated noise does not synchronize the consistent information in 
the data of different modalities so that the accuracy and robustness of decision-making 
can be improved.

Ablation study on HSME block

To do the ablation study on the HSME block, we compared the models with pure CNN/
Transformer feature extractors and with hybrid (i.e., HSME) feature extractors. As 
shown in Fig. 5, the models using the HSME block achieved the highest accuracies, and 
generally performed better than those extracting features via pure CNN or Transformer 
encoders.

It is interesting to find that the US single-modal models with pure CNN feature extrac-
tors performed slightly better than those with pure Transformer feature extractors, 
whereas the IRT single-modal models with pure Transformer feature extractors per-
formed slightly better than those with pure CNN feature extractors. This phenomenon 
suggests that CNN still has a significant role to play in the extraction of features from 
images, although the Transformer-based models have been developing rapidly in the 
field of computer vision over the past 2 years. Different encoders behave differently to 
the characteristics of the images of different modalities. A model needs to focus on dif-
ferent features of different modalities using different feature extractors. For example, if 
it is needed to classify the thyroid nodules using IRT images, the model should be more 
concerned with the temperature distribution characteristics, which means that it should 
have a good global feature modeling capability. If the US images are used, the model 
should focus on local features such as the boundary and texture of the lesion area, which 
means that it should have good local feature extraction capability. Therefore, CNN and 
Transformer hybrid encoder should be used in the feature extraction phase in our multi-
modal models, which has been confirmed by the results of the ablation experiments.

Ablation study on ACME block

In order to explore the capability of the ACME component in multi-modal feature 
fusion, we compared three pairs of multi-modal models. The only difference between 
the two models in each pair is whether the ACME is used. Table 5 lists the comparing 

Fig. 5 Comparison Results of Models with Hybrid and Pure Feature Encoders. a On US, b on IRT, c on US and IRT
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results. As we can see in Table  5, the introduction of ACME has improved the accu-
racy of the multi-modal approaches by over 10%. ACME processes and integrates the 
extracted features from different modalities based on the Transformer module, which 
weakens the effects of redundant features and some noise from two different modali-
ties, and realizes sufficient information interaction between the modalities. Therefore, 
the introduction of ACME greatly improves the performance of the model. The experi-
mental results also demonstrate that the combination of ACME and HSME can provide 
richer information for the classification of thyroid nodules, which makes our AmmH 
model outperform all other competing multi-modal methods.

Ablation study on AWMG block

To investigate whether the AWMG is helpful to improve the performance of our model, 
we removed this block from AmmH and compared it with the original AmmH. It can be 
observed in Table 6 that the introduction of AWMG can actually boost the model’s per-
formance by enabling personalized weighting for different modalities. This is due to the 
fact that there are significant differences between individual cases, and the model should 
adaptively assign different weights to each modality for different cases when making 
the final decision, rather than treating all modalities equally. Note that as the design of 
AWMG is general, it could be easily extended to other multi-modal problems in future 
applications.

Complexity analysis

In order to better evaluate the various models, we analyzed their complexity, and the 
results are shown in Table 7. It reveals that multi-modal models, in comparison to their 
single-modal counterparts, exhibit enhanced classification performance at the expense 
of increased time and space complexity, which is attributed to the need for an additional 

Table 5 Comparison results of multi-modal models with (without) ACME

Bold values indicate the best results achieved in each indicator

“w/” indicates “with”; “w/o” indicates “without”; “ACME” indicates adaptive cross-modal encoder

Model ACC PRE SEN SPE F1 F2

ResNet w/o AMCE 0.8444 0.9000 0.7472 0.9283 0.8165 0.8854

ResNet w/ AMCE 0.9406 0.9358 0.9358 0.9446 0.9358 0.9428
ViT w/o AMCE 0.8357 0.8178 0.8302 0.8404 0.8240 0.8383

ViT w/ AMCE 0.9476 0.9242 0.9660 0.9316 0.9446 0.9383
Hybrid w/o AMCE 0.8636 0.8880 0.8075 0.9121 0.8458 0.8891

AmmH 0.9738 0.9699 0.9736 0.9739 0.9717 0.9738

Table 6 Comparison of experimental results with (without) adaptive modality-weight generation 
component in AmmH model

Bold values indicate the best results achieved in each indicator

“w/o” indicates “without”; “AWMG” indicates adaptive weight-modality generation

Row model ACC PRE SEN SPE F1 F2

1(ours) AmmH 0.9738 0.9699 0.9736 0.9739 0.9717 0.9738
2 AmmH w/o AWMG 0.9545 0.9164 0.9925 0.9218 0.9529 0.9351
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feature extractor for each supplementary modality. We can also see that the pure Trans-
former-based multi-modal models (ViT) do not significantly perform better than the 
pure CNN-based multi-modal models (ResNet), though the time and space complexity 
of the former is considerably higher than the latter, suggesting that the elevated com-
plexity does not necessarily ensure the superior classification performance. It is noticea-
ble that the time and space complexity of our proposed AmmH model (a hybrid of CNN 
and Transformer) is just about half of the pure-Transformer based model, while a little 
higher than that of the pure CNN-based model. Nevertheless, AmmH performs signifi-
cantly better than the above two models. This further confirms that although both CNN 
and Transformer have shortcomings, they have complementarity. Therefore, the hybrid 
of them can simultaneously have the local feature learning ability of CNN and the global 
feature learning ability of Transformer, thus achieving excellent classification perfor-
mance in our work. Considering the fact that the complexity of CNN is much lower than 
that of Transformer, we believe that our AmmH model can well balance the complexity 
and classification performance.

Conclusion
In this paper, we propose a novel AmmH model for classifying thyroid nodules using 
US and IRT images. The AmmH consists of a two-branch feature extraction module, 
each branch of which is a Hybrid Single-modal Encoder (HSME) by bridging CNN and 
Transformer to extract the local and global features of a single modality, and an adap-
tive feature module that can encourage interactions and build long-range dependen-
cies between different modalities via an ACME component with adaptive weights for 
different cases through the AWMG network. The design of our model is general and 
could be applied to other multi-modal applications. We validated our method on our 
Th-USIRT dataset. The experimental results showed that the multi-modal methods out-
performed the single-modal methods for classifying the thyroid nodules, and the CNN-
Transformer hybrid feature extractors had better feature extraction abilities than pure 
CNN or pure Transformer encoders. Besides, the introduction of the ACME allows the 
model to better fuse information from US and IRT images, providing richer information 
helpful for the classification of thyroid nodules. Our model, AmmH, outperformed all 

Table 7 Classification performance versus model complexity

a  The number of parameters that need to be trained during the model training, which is used to measure the space 
complexity of a model.
b  The number of floating-point operations, which is used to measure the time complexity of a model.
c  M: Millions.
d  G: 109

Modality Model F1 F2 Paramsa FLOPsb

Single(US) ResNet 0.6945 0.8140 11.17  Mc 1.96  Gd

Single(IRT) ResNet 0.6438 0.7618 11.17 M 1.96 G

Single(US) ViT 0.6889 0.7854 85.65 M 16.86 G

Single(IRT) ViT 0.7191 0.7441 85.65 M 16.86 G

Two(US+IRT) ResNet w/ AMCE 0.9358 0.9428 87.58 M 16.47 G

Two(US+IRT) ViT w/ AMCE 0.9446 0.9383 236.54 M 46.28 G

Two(US+IRT) AmmH(Hybrid w/ AMCE) 0.9717 0.9738 121.30 M 23.77 G
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other competing methods, suggesting that it is a suitable method for our task. However, 
there is still room for improvement in the balance between performance and complexity 
of our model. For instance, we adopted the same encoders (i.e., HSME) to respectively 
extract features from US and IRT images without designing more suitable feature extrac-
tors for different image modalities. In the future, we will further study the characteristics 
of different image modalities and design feature extractors with lower complexity while 
ensuring the classification performance of the multi-modal models. Despite some limi-
tations, overall, the proposed approach still holds significant potential in the automated 
and accurate diagnosis of thyroid nodules.

Author Contributions
NZ and JL conceived and designed the study. NZ analyzed the data and executed the experiments. NZ, YJ, WD and ZW 
collected and processed the data. NZ and JL wrote the manuscript. JL, ZC and MW provided guidance and made critical 
revisions. All authors read and approved the final manuscript.

Funding
This work was supported by the Major Projects of Technological Innovation in Hubei Province [Grant Number 
2023BCB024]; the Frontier Projects of Wuhan for Application Foundation [Grant Number 2019010701011381]; and the 
Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University [Grant 
Number ZNJC202226].

Availability of data and materials
The data that support the findings of this study are available on request from the author [NZ]. The data are not publicly 
available due to them containing information that could compromise research participant consent. The code is open-
source and can be found in the GitHub project repository:https:// github. com/ wuliZ N2020/ AmmH.

Declarations

 Ethics approval and consent to participate
All procedures performed in this study are in accordance with the tenets of the Declaration of Helsinki and are approved 
by the ethics committee of the Zhongnan Hospital of Wuhan University (2022215). Informed consent was obtained from 
all the participants. 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 November 2022   Accepted: 15 August 2023

References
 1. Abbasian Ardakani A, Bitarafan-Rajabi A, Mohammadzadeh A, Mohammadi A, Riazi R, Abolghasemi J, Homayoun 

Jafari A, Bagher Shiran M. A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound 
images. J Ultrasound Med. 2019;38(3):629–40.

 2. Burman KD, Wartofsky L. Thyroid nodules. N Engl J Med. 2015;373(24):2347–56.
 3. Russ G. Risk stratification of thyroid nodules on ultrasonography with the french ti-rads: description and reflections. 

Ultrasonography. 2016;35(1):25.
 4. Dash TK, Chakraborty C, Mahapatra S, Panda G. Gradient boosting machine and efficient combination of features for 

speech-based detection of covid-19. IEEE J Biomed Health Inform. 2022;26(11):5364–71.
 5. Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh C-H, Connelly A. 

Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 
2019;202: 116137.

 6. Bhuyan HK, Chakraborty C, Shelke Y, Pani SK. Covid-19 diagnosis system by deep learning approaches. Expert Syst. 
2022;39(3):12776.

 7. Kwon SW, Choi IJ, Kang JY, Jang WI, Lee G-H, Lee M-C. Ultrasonographic thyroid nodule classification using a deep 
convolutional neural network with surgical pathology. J Digit Imaging. 2020;33(5):1202–8.

 8. Guan Q, Wang Y, Du J, Qin Y, Lu H, Xiang J, Wang F. Deep learning based classification of ultrasound images for 
thyroid nodules: a large scale of pilot study. Ann Transl Med. 2019;7(7):137.

 9. Helmy A, Holdmann M, Rizkalla M. Application of thermography for non-invasive diagnosis of thyroid gland disease. 
IEEE Trans Biomed Eng. 2008;55(3):1168–75.

https://github.com/wuliZN2020/AmmH


Page 18 of 18Zhang et al. BMC Bioinformatics          (2023) 24:315 

 10. Bahramian F, Mojra A. Thyroid cancer estimation using infrared thermography data. Infrared Phys Technol. 2020;104: 
103126.

 11. de Camargo VMB, Ulbricht L, Coninck JCP, Ripka WL, Gamba HR. Thermography as an aid for the complementary 
diagnosis of nodules in the thyroid gland. Biomed Eng Online. 2022;21(1):1–15.

 12. Tang W, He F, Liu Y, Duan Y. Matr: multimodal medical image fusion via multiscale adaptive transformer. IEEE Trans 
Image Process. 2022;31:5134–49.

 13. Ravi V, Narasimhan H, Chakraborty C, Pham TD. Deep learning-based meta-classifier approach for covid-19 classifica-
tion using ct scan and chest x-ray images. Multimedia Syst. 2022;28(4):1401–15.

 14. Razzaghi P, Abbasi K, Shirazi M, Rashidi S. Multimodal brain tumor detection using multimodal deep transfer learn-
ing. Appl Soft Comput. 2022;129: 109631.

 15. Li B, Hwang J-N, Liu Z, Li C, Wang Z. Pet and mri image fusion based on a dense convolutional network with dual 
attention. Comput Biol Med. 2022;151: 106339.

 16. Wang F, Cheng C, Cao W, Wu Z, Wang H, Wei W, Yan Z, Liu Z. Mfcnet: a multi-modal fusion and calibration networks 
for 3d pancreas tumor segmentation on pet-ct images. Comput Biol Med. 2023;155: 106657.

 17. Huang W, Wang X, Huang Y, Lin F, Tang X (2022) Multi-parametric magnetic resonance imaging fusion for automatic 
classification of prostate cancer. In: 2022 44th Annual international conference of the ieee engineering in medicine 
& biology Society (EMBC), pp. 471–474. IEEE.

 18. Yan R, Ren F, Wang Z, Wang L, Zhang T, Liu Y, Rao X, Zheng C, Zhang F. Breast cancer histopathological image clas-
sification using a hybrid deep neural network. Methods. 2020;173:52–60.

 19. Ketu S, Mishra PK. India perspective: Cnn-lstm hybrid deep learning model-based covid-19 prediction and current 
status of medical resource availability. Soft Comput. 2022;26:645–64.

 20. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you 
need. In: Guyon, I., Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in 
neural information processing systems 30 (NIPS 2017). Advances in Neural Information Processing Systems, vol. 30 
(2017). In: 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, DEC 04-09.

 21. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, 
Gelly S et al: (2020) An image is worth 16x16 words: transformers for image recognition at scale. In: International 
Conference on Learning Representations.

 22. Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers & 
distillation through attention. In: International conference on machine learning, pp. 10347–10357 . PMLR.

 23. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using 
shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022.

 24. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, Brat DJ, Cooper LA. 
Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci. 
2018;115(13):2970–9.

 25. Chen RJ, Lu MY, Wang J, Williamson DF, Rodig SJ, Lindeman NI, Mahmood F. Pathomic fusion: an integrated frame-
work for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans Med Imag. 
2020;41:754.

 26. Braman N, Gordon JW, Goossens ET, Willis C, Stumpe MC, Venkataraman J (2021) Deep orthogonal fusion: Multi-
modal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data. In: International 
conference on medical image computing and computer-assisted intervention, pp. 667–677. Springer.

 27. Zhou T. Modality-level cross-connection and attentional feature fusion based deep neural network for multi-modal 
brain tumor segmentation. Biomed Signal Process Control. 2023;81: 104524.

 28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 770–778.

 29. Ba JL, Kiros JR, Hinton GE. Layer normalization stat. 2016;1050:21.
 30. Hendrycks D, Gimpel K (2016) Bridging nonlinearities and stochastic regularizers with gaussian error linear units.
 31. Kenton JDM-WC, Toutanova LK (2019) Bert: Pre-training of deep bidirectional transformers for language under-

standing. In: Proceedings of NAACL-HLT, pp. 4171–4186.
 32. Devarriya D, Gulati C, Mansharamani V, Sakalle A, Bhardwaj A. Unbalanced breast cancer data classification using 

novel fitness functions in genetic programming. Expert Syst Appl. 2020;140: 112866. https:// doi. org/ 10. 1016/j. eswa. 
2019. 112866.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.eswa.2019.112866
https://doi.org/10.1016/j.eswa.2019.112866

	An adaptive multi-modal hybrid model for classifying thyroid nodules by combining ultrasound and infrared thermal images
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Method
	Overview of the AmmH model
	Feature extraction module
	Intra-modal convolutional encoder
	Feature embedding layer
	Intra-modal transformer encoder

	Feature fusion module
	Adaptive modality-weight generation network
	Adaptive cross-modal encoder


	Materials and experiments
	Data collection
	Experimental settings
	Comparison AmmH with other methods
	Ablation study on multi-modal learning
	Ablation study on HSME block
	Ablation study on ACME block
	Ablation study on AWMG block
	Complexity analysis

	Conclusion
	References


