Sing CF, Stengard JH, Kardia SL: Genes, environment and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003, 23: 1190–1196. 10.1161/01.ATV.0000075081.51227.86
Article
CAS
PubMed
Google Scholar
World Health Organization[http://www.who.int/dietphysicalactivity/publications/facts/cvd/en/]
McGee DL, Diverse Populations Collaboration: Body mass index and mortality: A meta-analysis based on person-level data from twenty-six observational studies. Ann Epidemio 2004, 15: 87–97. 10.1016/j.annepidem.2004.05.012
Article
Google Scholar
Wilson PWF, D'Agostino RB, Sullivan L, Parise H, Kannel WB: Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. Arch Intern Med 2002, 162: 1867–1872. 10.1001/archinte.162.16.1867
Article
PubMed
Google Scholar
Stevens J, Cai J, Pamuk ER, Williamson DF, Thun MJ, Wood JL: The effect of age on the association between body-mass index and mortality. N Engl J Med 1998, 338: 1–7. 10.1056/NEJM199801013380101
Article
CAS
PubMed
Google Scholar
Frint AJ, Rimm EB: Commentary: Obesity and cardiovascular disease risk among the young and old-is BMI the wrong benchmark? Int J Epidiom 2006, 35: 187–189.
Google Scholar
Sodjinou R, Agueh V, Fayomi B, Delisle H: Obesity and cardio-metabolic risk factors in urban adults of Benin: Relationship with socio-economic status, urbanisation, and lifestyle patterns. BMC Public Health 2008, 8: 84. 10.1186/1471-2458-8-84
Article
PubMed
PubMed Central
Google Scholar
Boutayeb A, Boutayeb S: The burden of non communicable diseases in developing countries. Int J Equity Health 2005, 4: 2. 10.1186/1475-9276-4-2
Article
PubMed
PubMed Central
Google Scholar
Popkin BM: An overview of the nutrition transition and its health implications: the Bellagio meeting. Public Health Nutr 2002, 5: 93–103.
PubMed
Google Scholar
Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA: Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J 2007, 6: 29. 10.1186/1475-2891-6-29
Article
PubMed
PubMed Central
Google Scholar
Ordovas JM, Mooser V: Nutrigenomics and nutrigenetics. Curr Opin Lipidol 2004, 15: 101–108. 10.1097/00041433-200404000-00002
Article
CAS
PubMed
Google Scholar
Pearson TA, Osorio D, Brown K: Nutritional interventions in cardiovascular disease: New challenges and opportunities. Curr Atheroscler Rep 2000, 2: 515–520. 10.1007/s11883-000-0052-x
Article
CAS
PubMed
Google Scholar
Heidema AG, Boer JM, Nagelkerke N, Mariman EC, van der A DL, Feskens EJM: The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases. BMC Genet 2006, 7: 23. 10.1186/1471-2156-7-23
Article
PubMed
PubMed Central
Google Scholar
Tomida S, Hanai T, Suzuki Y, Kobayashi T, Honda H: Artificial neural network predictive model for allergic disease using single nucleotide polymorphism data. J Biosci Bioeng 2002, 93: 470–478.
Article
CAS
PubMed
Google Scholar
Tomita Y, Tomida S, Hasegawa Y, Suzuki Y, Shirakawa T, Kobayashi T, Honda H: Artificial neural network approach for selection of susceptible single nucleotide polymorphisms and construction of prediction model on childhood allergic asthma. BMC Bioinformatics 2004, 5: 120. 10.1186/1471-2105-5-120
Article
PubMed
PubMed Central
Google Scholar
Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH: Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 2003, 4: 28. 10.1186/1471-2105-4-28
Article
PubMed
PubMed Central
Google Scholar
Motsinger AA, Lee SL, Mellick G, Ritchie MD: GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics 2006, 7: 39. 10.1186/1471-2105-7-39
Article
PubMed
PubMed Central
Google Scholar
Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP: Identifying SNPs predictive of phenotype using random forest. Genet Epidemiol 2005, 28: 171–182. 10.1002/gepi.20041
Article
PubMed
Google Scholar
Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu FC, Dimitrov L, Chang B, . Turner AR, Liu W, Adami HO, Suh E, Moore JH, Zheng SL, Isaacs WB, Trent JM, Grönberg H: The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2005, 14: 2563–2568. 10.1158/1055-9965.EPI-05-0356
Article
CAS
PubMed
Google Scholar
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH: Multifactor-dimensionality reduction reveals high-order interactions among estrogem-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001, 69: 128–147. 10.1086/321276
Article
Google Scholar
Briollais L, Wang Y, Rajendram I, Onay V, Shi E, Knight J, Ozcelik H: Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario. BMC Medicine 2007, 5: 22. 10.1186/1741-7015-5-22
Article
PubMed
PubMed Central
Google Scholar
Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD, Lee HK, Park KS: Multifactor-dimensionality reduction shows a two locus interaction associated with Type 2 diabetes mellitus. Diabetologia 2004, 47: 549–554. 10.1007/s00125-003-1321-3
Article
CAS
PubMed
Google Scholar
Wei Z, et al.: From disease association to risk assessment: An optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genetics 2009, 5: 1–11.
Google Scholar
Nakamichi R, Imoto S, Miyano S: Case-control study of binary disease trait considering interactions between SNPs and environmental effects using logistic regression. Proceedings of the 4th IEEE Symposium on Bioinformatics and Bioengineering: 19–21 May 2004; Taichung-Taiwan 2004, 73–78.
Chapter
Google Scholar
Yu W, Lu T, Valdez R, Gwinn M, Khoury MJ: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Medical Informatics and Decision Making 2010, 10: 16. 10.1186/1472-6947-10-16
Article
PubMed
PubMed Central
Google Scholar
Wakefield J, Vocht FD, Hung RJ: Bayesian mixture modeling of gene-environment and gene-gene interactions. Genet Epidemiol 2009, 34: 16–25.
Google Scholar
Williams SM, Ritchie MD, Phillips JA, Dawson E, Prince M, Dzhura E, Willis A, Semenya A, Summar M, White BC, Addy JH, Kpodonu J, Wong LJ, Felder RA, Jose PA, Moore JH: Multilocus analysis of hypertension: a hierarchical approach. Hum Hered 2004, 57: 28–38. 10.1159/000077387
Article
PubMed
Google Scholar
Duncan AE, Agrawal A, Grant JD, Bucholz KK, Madden PAF, Heath AC: Genetic and environmental contributions to BMI in adolescent and young adult women. Obesity 2009, 17: 1040–1043. 10.1038/oby.2008.643
Article
PubMed
PubMed Central
Google Scholar
Liu PH, Jiang YD, Chen WJ, Chang CC, Lee TC, Sun HS, Chuang LM: Genetic and environmental influences on adiponectin, leptin, and BMI among adolescents in Taiwan: a multivariate twin/sibling analysis. Twin Res Hum Genet 2008, 11: 495–504. 10.1375/twin.11.5.495
Article
PubMed
Google Scholar
Karnehed N, Tynelius P, Heitmann BL, Rasmussen F: Physical activity, diet and gene-environment interactions in relation to body mass index and waist circumference: the Swedish young male twins study. Public Health Nutr 2006, 9: 851–858. 10.1017/PHN2005926
Article
PubMed
Google Scholar
Robitaille J, Pérusse L, Bouchard C, Vohl MC: Genes, Fat Intake, and Cardiovascular Disease Risk Factors in the Quebec Family Study. Obesity 2007, 15: 2336–2347. 10.1038/oby.2007.277
Article
CAS
PubMed
Google Scholar
Mougiakakou SG, Tsouchlaraki AL, Cassios C, Nikita KS, Uzunoglu NK: SCAPEVIEWER: preliminary results of a landscape perception classification system based on neural network technology. Ecological Engineering 2005, 24: 5–15. 10.1016/j.ecoleng.2004.12.003
Article
Google Scholar
Mougiakakou SG, Golemati S, Gousias I, Nikolaides AN, Nikita KS: Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws' texture and neural networks. Ultrasound in Medicine & Biology 2007, 33: 26–36.
Article
Google Scholar
Valavanis I, Mougiakakou SG, Grimaldi K, Nikita KS: Analysis of Postprandial Lipemia as a Cardiovascular Disease Risk Factor using Genetic and Clinical Information: An Artificial Neural Network Perspective. Proceedings of IEEE Engineering in Medicine and Biology Conference: 20–24 August 2008; Vancouver 2008, 4609–4612. full_text
Chapter
Google Scholar
Haykin S: Neural networks: A comprehensive foundation. Prentice-Hall: New Jersey; 1999.
Google Scholar
Chernick MR, Friis RH: Introductory Biostatistics for the Health Sciences: Modern Applications Including Bootstrap. Wiley Interscience: New York; 2003. full_text
Book
Google Scholar
Goldberg D: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company; 1989.
Google Scholar
Arifovic J, Gencay R: Using genetic algorithms to select architecture of a feed forward artificial neural network. Physica A 2001, 289: 574–594. 10.1016/S0378-4371(00)00479-9
Article
Google Scholar
Moore DS, McCabe G, Duckworth W, Sclove : Bootstrap methods and permutation tests. In "The Practice of Business Statistics,". Volume Chapter 18. WH Freeman, New York; 2003.
Google Scholar
North BV, Curtis D, Cassell PG, Hitman GA, Sham PC: Assessing optimal neural network architecture for identifying disease-associated multi-marker genotypes using a permutation test, and application to calpain 10 polymorphisms associated with diabetes. Ann Hum Genet 2003, 67(348):56.
Google Scholar
Canizales-Cuinteros S, et al.: Association of PPARG2 Pro12Ala variant with larger body mass index in Mestizo and Amerindian populations of Mexico. Hum Biol 2007, 9: 111–119. 10.1353/hub.2007.0022
Article
Google Scholar
Hermann SM, et al.: Polymorphisms of the tumour necrosis factor-alpha gene, coronary heart disease and obesity. Eur J Clin Invest 1998, 28: 59–66. 10.1046/j.1365-2362.1998.00244.x
Article
Google Scholar
Mougiakakou SG, Valavanis IK, Karkalis G, Marinos S, Grimaldi KA, Nikita KS: An Integrated Web-based Platform for the Provision of Personalized Advices in High Risk Persons for CVD. To appear in the Proceedings of 9th International Conference on Information Technology and Applications in Biomedicine (ITAB2009): 5–7 November 2009; Cyprus 2009.
Google Scholar
Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19: 376–382. 10.1093/bioinformatics/btf869
Article
CAS
PubMed
Google Scholar