Hartl FU: Molecular chaperones in cellular protein folding. Nature 1996, 381(6583):571–580. 10.1038/381571a0
Article
CAS
PubMed
Google Scholar
Young JC, Agashe VR, Siegers K, Hartl FU: Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Bio 2004, 5(10):781–791. 10.1038/nrm1492
Article
CAS
Google Scholar
Welch WJ: Heat-Shock Proteins Functioning as Molecular Chaperones - Their Roles in Normal and Stressed Cells. Philos T Roy Soc B 1993, 339(1289):327–333. 10.1098/rstb.1993.0031
Article
CAS
Google Scholar
Kamal A, Boehm MF, Burrows FJ: Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004, 10(6):283–290. 10.1016/j.molmed.2004.04.006
Article
CAS
PubMed
Google Scholar
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ: A high-affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Clin Cancer Res 2003, 9(16):6126s-6126s.
Google Scholar
Falsone SF, Gesslbauer B, Tirk F, Piccinini AM, Kungl AJ: A proteomic snapshot of the human heat shock protein 90 interactome. Febs Lett 2005, 579(28):6350–6354. 10.1016/j.febslet.2005.10.020
Article
CAS
PubMed
Google Scholar
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, et al.: Navigating the chaperone network: an integrative map of physical, genetic, and chemical-genetic interactions mediated by the yeast Hsp90 chaperone system. Febs J 2005, 272: 349–349.
Google Scholar
Chiosis G, Neckers L: Tumor selectivity of Hsp90 inhibitors: The explanation remains elusive. Acs Chem Biol 2006, 1(5):279–284. 10.1021/cb600224w
Article
CAS
PubMed
Google Scholar
Pearl LH, Prodromou C, Workman P: The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 2008, 410: 439–453. 10.1042/BJ20071640
Article
CAS
PubMed
Google Scholar
Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C: Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 2007, 14(27):2839–2847. 10.2174/092986707782360079
Article
CAS
PubMed
Google Scholar
Solit DB, Chiosis G: Development and application of Hsp90 inhibitors. Drug Discov Today 2008, 13(1–2):38–43. 10.1016/j.drudis.2007.10.007
Article
CAS
PubMed
Google Scholar
Gress TM, Mullerpillasch F, Weber C, Lerch MM, Friess H, Buchler M, Beger HG, Adler G: Differential Expression of Heat-Shock Proteins in Pancreatic-Carcinoma. Cancer Res 1994, 54(2):547–551.
CAS
PubMed
Google Scholar
Ferrarini M, Heltai S, Zocchi MR, Rugarli C: Unusual Expression and Localization of Heat-Shock Proteins in Human Tumor-Cells. Int J Cancer 1992, 51(4):613–619. 10.1002/ijc.2910510418
Article
CAS
PubMed
Google Scholar
Workman P: Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 2004, 206(2):149–157. 10.1016/j.canlet.2003.08.032
Article
CAS
PubMed
Google Scholar
McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J: Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 2007, 131(1):121–135. 10.1016/j.cell.2007.07.036
Article
CAS
PubMed
Google Scholar
Isaacs JS, Xu WP, Neckers L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003, 3(3):213–217. 10.1016/S1535-6108(03)00029-1
Article
CAS
PubMed
Google Scholar
Richter K, Buchner J: Hsp90: Chaperoning signal transduction. J Cell Physiol 2001, 188(3):281–290. 10.1002/jcp.1131
Article
CAS
PubMed
Google Scholar
Pratt WB, Toft DO: Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 2003, 228(2):111–133.
CAS
Google Scholar
Whitesell L, Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005, 5(10):761–772. 10.1038/nrc1716
Article
CAS
PubMed
Google Scholar
Powers MV, Workman P: Inhibitors of the heat shock response: Biology and pharmacology. Febs Lett 2007, 581(19):3758–3769. 10.1016/j.febslet.2007.05.040
Article
CAS
PubMed
Google Scholar
Neckers L: Development of small molecule Hsp90 inhibitors: Utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 2003, 10(9):733–739. 10.2174/0929867033457818
Article
CAS
PubMed
Google Scholar
Whitesell L, Mimnaugh EG, Decosta B, Myers CE, Neckers LM: Inhibition of Heat-Shock Protein Hsp90-Pp60(V-Src) Heteroprotein Complex-Formation by Benzoquinone Ansamycins - Essential Role for Stress Proteins in Oncogenic Transformation. P Natl Acad Sci USA 1994, 91(18):8324–8328. 10.1073/pnas.91.18.8324
Article
CAS
Google Scholar
Sharma SV, Agatsuma T, Nakano H: Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 1998, 16(20):2639–2645. 10.1038/sj.onc.1201790
Article
CAS
PubMed
Google Scholar
Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA: Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001, 61(10):4003–4009.
CAS
PubMed
Google Scholar
Li YY, Zhang T, Schwartz SJ, Sun DX: New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential. Drug Resist Update 2009, 12(1–2):17–27. 10.1016/j.drup.2008.12.002
Article
CAS
Google Scholar
Zhang T, Hamza A, Cao XH, Wang B, Yu SW, Zhan CG, Sun DX: A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008, 7(1):162–170. 10.1158/1535-7163.MCT-07-0484
Article
CAS
PubMed
Google Scholar
Gray PJ, Stevenson MA, Calderwood SK: Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 2007, 67(24):11942–11950. 10.1158/0008-5472.CAN-07-3162
Article
CAS
PubMed
Google Scholar
Gray PJ, Prince T, Cheng J, Stevenson MA, Calderwood SK: Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 2008, 8(7):491–495. 10.1038/nrc2420
Article
PubMed Central
CAS
PubMed
Google Scholar
Pearl LH: Hsp90 and Cdc37 - a chaperone cancer conspiracy. Curr Opin Genet Dev 2005, 15(1):55–61. 10.1016/j.gde.2004.12.011
Article
CAS
PubMed
Google Scholar
Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MMU, Prodromou C, Robinson CV, Saibil HR, Pearl LH: Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 2006, 23(5):697–707. 10.1016/j.molcel.2006.07.016
Article
CAS
PubMed
Google Scholar
Silverstein AM, Grammatikakis N, Cochran BH, Chinkers M, Pratt WB: P50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 1998, 273(32):20090–20095. 10.1074/jbc.273.32.20090
Article
CAS
PubMed
Google Scholar
Smith JR, Clarke PA, de Billy E, Workman P: Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 2009, 28(2):157–169. 10.1038/onc.2008.380
Article
PubMed Central
CAS
PubMed
Google Scholar
Winters M: Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Alternative Medicine Review 2006, 11(4):269–277.
PubMed
Google Scholar
Matsuda H, Murakami T, Kishi A, Yoshikawa M: Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorgan Med Chem 2001, 9(6):1499–1507. 10.1016/S0968-0896(01)00024-4
Article
CAS
Google Scholar
Ray A, Gupta M: Withasteroids, a growing group of naturally occurring steroidal lactones. In Progress in the chemistry of natural organic products. Volume 63. Edited by: W, Kerby G, Moore R, Steglich W, Tamm C. New York: Springer-Verlag; 1994:1–106.
Google Scholar
Alhindawi MK, Alkhafaji SH, Abdulnabi MH: Antigranuloma Activity of Iraqi Withania-Somnifera. J Ethnopharmacol 1992, 37(2):113–116. 10.1016/0378-8741(92)90069-4
Article
CAS
Google Scholar
Mishra L, Singh B, Dagenias S: Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 2000, 5: 334–336.
CAS
PubMed
Google Scholar
Owais M, Sharad KS, Shehbaz A, Saleemuddin M: Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 2005, 12(3):229–235. 10.1016/j.phymed.2003.07.012
Article
CAS
PubMed
Google Scholar
Bhattacharya A, Ghosal S, Bhattacharya SK: Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 2001, 74(1):1–6. 10.1016/S0378-8741(00)00309-3
Article
CAS
PubMed
Google Scholar
Kulkarni SK, George B, Mathur R: Protective effect of Withania somnifera root extract on electrographic activity in a lithium-pilocarpine model of status epilepticus. Phytotherapy Research 1998, 12(6):451–453. Publisher Full Text 10.1002/(SICI)1099-1573(199809)12:6<451::AID-PTR328>3.0.CO;2-C
Article
CAS
Google Scholar
Furmanowa M, Gajdzis-Kuls D, Ruszkowska J, Czarnocki Z, Obidoska G, Sadowska A, Rani R, Upadhyay SN: In vitro propagation of Withania somnifera and isolation of withanolides with immunosuppressive activity. Planta Med 2001, 67(2):146–149. 10.1055/s-2001-11494
Article
CAS
PubMed
Google Scholar
Sharada AC, Solomon FE, Devi PU, Udupa N, Srinivasan KK: Antitumor and radiosensitizing effects of withaferin a on mouse Ehrlich ascites carcinoma in vivo. Acta Oncol 1996, 35(1):95–100. 10.3109/02841869609098486
Article
CAS
PubMed
Google Scholar
Yu YK, Hamza A, Zhang T, Gu MC, Zou P, Newman B, Li YY, Gunatilaka AAL, Zhan CG, Sun DX: Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010, 79(4):542–551. 10.1016/j.bcp.2009.09.017
Article
PubMed Central
CAS
PubMed
Google Scholar
Mathur S, Kaur P, Sharma M, Katyal A, Singh B, Tiwari M, Chandra R: The treatment of skin carcinoma, induced by UVB radiation, using 1-oxo-5 beta,6 beta-epoxy-witha-2-enolide, isolated from the roots of Withania somnifera, in a rat model. Phytomedicine 2004, 11(5):452–460. 10.1016/j.phymed.2003.05.004
Article
CAS
PubMed
Google Scholar
Kuboyama T, Tohda C, Komatsu K: Withanoside IV and its active metabolite, sominone, attenuate A beta(25–35)-induced neurodegeneration. Eur J Neurosci 2006, 23(6):1417–1426. 10.1111/j.1460-9568.2006.04664.x
Article
PubMed
Google Scholar
Tohda C, Kuboyama T, Komatsu K: Search for natural products related to regeneration of the neuronal network. Neurosignals 2005, 23(1–2):34–45. 10.1159/000085384
Article
Google Scholar
Sreeramulu S, Jonker HRA, Langer T, Richter C, Lancaster CRD, Schwalbe H: The Human Cdc37.Hsp90 Complex Studied by Heteronuclear NMR Spectroscopy. J Biol Chem 2009, 284(6):3885–3896. 10.1074/jbc.M806715200
Article
CAS
PubMed
Google Scholar
NCBI-PubChem Compound database[http://pubchem.ncbi.nlm.nih.gov/]
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1996, 118(9):2309–2309. 10.1021/ja955032e
Article
CAS
Google Scholar
Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP: Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 1997, 89(2):239–250. 10.1016/S0092-8674(00)80203-2
Article
CAS
PubMed
Google Scholar
MacLean M, Picard D: Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperon 2003, 8(2):114–119. Publisher Full Text 10.1379/1466-1268(2003)008<0114:CGBHAK>2.0.CO;2
Article
CAS
Google Scholar
Shao JY, Irwin A, Hartson SD, Malts RL: Functional dissection of Cdc37: Characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry-Us 2003, 42(43):12577–12588. 10.1021/bi035138j
Article
CAS
Google Scholar
Zhang W, Hirshberg M, McLaughlin SH, Lazar GA, Grossmann JG, Nielsen PR, Sobott F, Robinson CV, Jackson SE, Laue ED: Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 2004, 340(4):891–907. 10.1016/j.jmb.2004.05.007
Article
CAS
PubMed
Google Scholar
Roe SM, Ali MMU, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl LH: The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 2004, 116(1):87–98. 10.1016/S0092-8674(03)01027-4
Article
CAS
PubMed
Google Scholar
Prodromou C, Panaretou B, Chohan S, Siligardi G, O'Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH: The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. Embo J 2000, 19(16):4383–4392. 10.1093/emboj/19.16.4383
Article
PubMed Central
CAS
PubMed
Google Scholar
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998, 19(14):1639–1662. Publisher Full Text 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Article
CAS
Google Scholar
Dym O, Xenarios I, Ke HM, Colicelli J: Molecular docking of competitive phosphodiesterase inhibitors. Mol Pharmacol 2002, 61(1):20–25. 10.1124/mol.61.1.20
Article
CAS
PubMed
Google Scholar
Rao MS, Olson AJ: Modelling of Factor Xa-inhibitor complexes: A computational flexible docking approach. Proteins 1999, 34(2):173–183. 10.1002/(SICI)1097-0134(19990201)34:2<173::AID-PROT3>3.0.CO;2-F
Article
CAS
PubMed
Google Scholar
Goodsell DS, Morris GM, Olson AJ: Automated docking of flexible ligands: Applications of AutoDock. J Mol Recognit 1996, 9(1):1–5. Publisher Full Text 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
Article
CAS
PubMed
Google Scholar
Hetenyi C, van der Spoel D: Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 2002, 11(7):1729–1737. 10.1110/ps.0202302
Article
PubMed Central
CAS
PubMed
Google Scholar
Morris GM, Goodsell DS, Huey R, Olson AJ: Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J Comput Aid Mol Des 1996, 10(4):293–304. 10.1007/BF00124499
Article
CAS
Google Scholar
DeLano W: The PyMOL Molecular Graphics System 2002. San Carlos, CA: DeLano Scientific; 2002.
Google Scholar
Gupta A, Gandhimathi A, Sharma P, Jayaram B: ParDOCK: An all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Peptide Lett 2007, 14(7):632–646. 10.2174/092986607781483831
Article
CAS
Google Scholar
Case DA DT, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong IF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA: AMBER 11. San Francisco: University of California; 2010.
Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 1983, 79(2):926–935. 10.1063/1.445869
Article
CAS
Google Scholar
Jakalian A, Bush BL, Jack DB, Bayly CI: Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I. Method. J Comput Chem 2000, 21(2):132–146. Publisher Full Text 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
Article
CAS
Google Scholar
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR: Molecular-Dynamics with Coupling to an External Bath. J Chem Phys 1984, 81(8):3684–3690. 10.1063/1.448118
Article
CAS
Google Scholar
Ryckaert JP, Ciccotti G, Berendsen HJC: Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 1977, 23(3):327–341. 10.1016/0021-9991(77)90098-5
Article
CAS
Google Scholar
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG: A Smooth Particle Mesh Ewald Method. J Chem Phys 1995, 103(19):8577–8593. 10.1063/1.470117
Article
CAS
Google Scholar