Hanahan D, Weinberg RA: The hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.
Article
CAS
PubMed
Google Scholar
Buchanan JA, Scherer SW: Contemplating effects of genomic structural variation. Genet Med. 2008, 10: 639-647. 10.1097/GIM.0b013e318183f848.
Article
PubMed
Google Scholar
Manolio TA: Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010, 363: 166-76. 10.1056/NEJMra0905980.
Article
CAS
PubMed
Google Scholar
Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L, Kiang A, Paschall J, Phan L, Popova N, Pretel S, Ziyabari L, Lee M, Shao Y, Wang ZY, Sirotkin K, Ward M, Kholodov M, Zbicz K, Beck J, Kimelman M, Shevelev S, Preuss D, Yaschenko E, Graeff A, Ostell J, Sherry ST: The NCBI dbGaP database of genotypes and phenotypes. Nat Genet. 2007, 39 (10): 1181-1186.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baldi P, Brunak S: Bioinformatics: The Machine Learning Approach. 2001, Cambridge, MA: The MIT Press, 2
Google Scholar
Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armananzas R, Santafe G, Perez A, Robles A: Machine learning in bioinformatics. Briefings in Bioinformatics. 2006, 7 (1): 86-112. 10.1093/bib/bbk007.
Article
CAS
PubMed
Google Scholar
Tarca AL, Carey VJ, Chen XW, Romero R, Draghici S: Machine learning and its applications to biology. PLoS Comput Biol. 2007, 3 (6): e116-10.1371/journal.pcbi.0030116.
Article
PubMed Central
PubMed
Google Scholar
Cruz JA, Wishart DS: Applications of machine learning in cancer prediction and prognosis. Cancer Informatics. 2006, 2: 59-78.
PubMed Central
Google Scholar
Mathé C, Sagot M-F, Schiex T, Rouzé P: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 2002, 30: 4103-4117. 10.1093/nar/gkf543.
Article
PubMed Central
PubMed
Google Scholar
Won K, Prugel-Bennett A, Krogh A: Training HMM structure with genetic algorithm for biological sequence analysis. Bioinformatics. 2004, 20 (18): 3613-3619. 10.1093/bioinformatics/bth454.
Article
CAS
PubMed
Google Scholar
Yi TM, Lander ES: Protein secondary structure prediction using nearest-neighbor methods. J Mol Biology. 1993, 232: 1117-1129. 10.1006/jmbi.1993.1464.
Article
CAS
Google Scholar
Pirooznia M, Yang JY, Yang MQ, Deng Y: A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics. 2008, 9 (Suppl 1): S13-10.1186/1471-2164-9-S1-S13.
Article
PubMed Central
PubMed
Google Scholar
Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C: Predicting genetic regulatory response using classification. Bioinformatics. 2004, 20 (Suppl 1): I232-I240. 10.1093/bioinformatics/bth923.
Article
CAS
PubMed
Google Scholar
Zhou GD, Shen D, Zhang J, Su J, Tan SH: Recognition of protein/gene names from text using an ensemble of classifiers. BMC Bioinformatics. 2005, 6 (Suppl 1): S7-10.1186/1471-2105-6-S1-S7.
Article
PubMed Central
PubMed
Google Scholar
Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey J, Wishart D, Greiner R, Zanke B: Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research. 2004, 10: 2725-2737. 10.1158/1078-0432.CCR-1115-03.
Article
CAS
PubMed
Google Scholar
Ban HJ, Heo JY, Oh KS, Park KJ: Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genetics. 2010, 11: 26-
Article
PubMed Central
PubMed
Google Scholar
Wei Z, Wang K, Qu HQ, Zhang H, Bradfield J, Kim C, Frackleton E, Hou C, Glessner JT, Chiavacci R, Stanley C, Monos D, Grant SFA, Polychronakos C, Hakonarson H: From disease association to risk assessment: an optimistic view from genome-wide association studies on type-1 diabetes. PLoS Genetics. 2009, 5 (10): e1000678-10.1371/journal.pgen.1000678.
Article
PubMed Central
PubMed
Google Scholar
Bondy ML, Newman LA: Assessing breast cancer risk: evolution of the Gail Model. J Natl Cancer Inst. 2006, 98 (17): 1172-1173. 10.1093/jnci/djj365.
Article
PubMed
Google Scholar
Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH: Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European Prospective Investigation Into Cancer and Nutrition cohort. J Natl Cancer Inst. 2006, 98 (23): 1686-1689. 10.1093/jnci/djj463.
Article
PubMed
Google Scholar
Mealiffe ME, Stokowski RP, Rhees BK, Prentice RL, Pettinger M, Hinds DA: Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information. J Natl Cancer Inst. 2010, 102 (21): 1618-1627. 10.1093/jnci/djq388.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR, Thun MJ, Cox DG, Hankinson SE, Kraft P, Rosner B, Berg CD, Brinton LA, Lissowska J, Sherman ME, Chlebowski R, Kooperberg C, Jackson RD, Buckman DW, Hui P, Pfeiffer R, Jacobs KB, Thomas GD, Hoover RN, Gail MH, Chanock SJ, Hunter DJ: Performance of common genetic variants in breast-cancer risk models. New England Journal of Medicine. 2010, 362: 986-93. 10.1056/NEJMoa0907727.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sehrawat B, Sridharan M, Ghosh S, Robson P, Cass CE, Mackey J, Greiner R, Damaraju S: Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility. Human Genetics. 2011, 130 (4): 529-537. 10.1007/s00439-011-0973-1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics. 2006, 38: 904-909. 10.1038/ng1847.
Article
CAS
PubMed
Google Scholar
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH: The WEKA Data Mining Software: An Update. SIGKDD Explorations. 2009, 11 (1): 10-18. 10.1145/1656274.1656278.
Article
Google Scholar
Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in bioinformatics. Bioinformatics. 2007, 23 (19): 2507-2517. 10.1093/bioinformatics/btm344.
Article
CAS
PubMed
Google Scholar
Cover TM, Hart PE: Nearest neighbor pattern classification. IEEE Trans Inform Theory. 1967, IT-13: 21-27.
Article
Google Scholar
Boulesteix AL, Strobl C, Augustin T, Daumer M: Evaluating microarray based classifiers: an overview. Cancer Informatics. 2008, 6: 77-97.
PubMed Central
PubMed
Google Scholar
Van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse H: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415 (31): 530-536.
Article
Google Scholar
Lee S: Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data. Stat Methods Med Res. 2008, 17: 635-642. 10.1177/0962280207084839.
Article
PubMed
Google Scholar
Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Hoover RN, Thomas G, Chanock SJ: A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics. 2007, 39 (7): 870-874. 10.1038/ng2075.
Article
PubMed Central
CAS
PubMed
Google Scholar
Good P: Permutation, Parametric, and Bootstrap Tests of Hypotheses. 2005, New York: Springer Series in Statistics, 3
Google Scholar
Ahsen ME, Singh NK, Boren T, Vidyasagar M, White MA: A new feature selection algorithm for two-class classification problems and application to endometrial cancer. Proceedings of the 51st IEEE Conference on Decision and Control: 10-13. 2012, December ; Maui, Hawaii, USA
Google Scholar
Quinlan JR: Induction of decision trees. Machine Learning. 1986, 1: 81-106.
Google Scholar
Ding C, Peng H: Minimum redundancy feature selection from microarray gene expression data. International Conference on Computational Systems Bioinformatics. 2003, 523-528.
Google Scholar
Jollife IT: Principal Component Analysis. 1986, Springer-Verlag, New York
Book
Google Scholar
Vapnik V: The Nature of Statistical Learning Theory. 1995, Springer-Verlag, New York
Book
Google Scholar
Easton DF, Pharoah PDP, Dunning AM, Pooley K, Cox DR, Ballinger D, Thompson D, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, the Search collaborators2, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Rahman N, Stratton MR, Peto J, Fletcher O, Ponder BAJ: A genome-wide association study identifies multiple novel breast cancer susceptibility loci. Nature. 2007, 447 (7148): 1087-93. 10.1038/nature05887.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL, Antman K, Hwang S-J: A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham heart study. BMC Medical Genetics. 2007, 8 (Suppl 1): S6-10.1186/1471-2350-8-S1-S6.
Article
PubMed Central
PubMed
Google Scholar
Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK, Strobbe LJ, Albers-Akkers MT, Swinkels DW, Henderson BE, Kolonel LN, Le ML, Millastre E, Andres R, Godino J, Garcia-Prats MD, Polo E, Tres A, Mouy M, Saemundsdottir J, Backman VM, Gudmundsson L, Kristjansson K, Bergthorsson JT, Kostic J: Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genetics. 2007, 39: 865-869. 10.1038/ng2064.
Article
CAS
PubMed
Google Scholar
Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J, Friedman E, Narod S, Olshen AB, Gregersen P: Genome-wide association study provides evidence for a breast cancer risk locus at 6q22. 33. Proc Natl Acad Sci. 2008, 105 (11): 4340-4345. 10.1073/pnas.0800441105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF, Jakobsdottir M, Bergthorsson JT, Gudmundsson J, Aben KK, Strobbe LJ, Swinkels DW, van Engelenburg KC, Henderson BE, Kolonel LN, Le ML, Millastre E, Andres R, Saez B, Lambea J, Godino J, Polo E, Tres A, Picelli S, Rantala J, Margolin S, Jonsson T, Sigurdsson H, Jonsdottir T, Hrafnkelsson J: Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genetics. 2008, 40: 703-706. 10.1038/ng.131.
Article
CAS
PubMed
Google Scholar
Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, Gonzalez-Bosquet J, Prokunina-Olsson L, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver R, Prentice R, Jackson R, Kooperberg C, Chlebowski R, Lissowska J, Peplonska B, Brinton LA, Sigurdson A, Doody M, Bhatti P, Alexander BH, Buring J, Lee IM, Vatten LJ, Hveem K, Kumle M, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Hoover RN, Chanock SJ, Hunter DJ: A multistage genome- wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature Genetics. 2008, 41: 579-584.
Article
Google Scholar
Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Stratton MR, Rahman N, Jacobs K, Prentice R, Anderson GL, Rajkovic A, Curb JD, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver WR, Bojesen S, Nordestgaard BG, Flyger H, Dork T, Schurmann P, Hillemanns P, Karstens JH, Bogdanova NV, Antonenkova NN, Zalutsky IV, Bermisheva M, Fedorova S, Khusnutdinova E, Kang D, Yoo KY, Noh DY, Ahn SH, Devilee P, van Asperen CJ, Tollenaar RA, Seynaeve C, Garcia-Closas M, Lissowska J, Brinton L, Peplonska B, Nevanlinna H, Heikkinen T, Aittomaki K, Blomqvist C, Hopper JL, Southey MC, Smith L, Spurdle AB, Schmidt MK, Broeks A, van Hien RR, Cornelissen S, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Schmutzler RK, Burwinkel B, Bartram CR, Meindl A, Brauch H, Justenhoven C, Hamann U, Chang-Claude J, Hein R, Wang-Gohrke S, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kataja V, Olson JE, Wang X, Fredericksen Z, Giles GG, Severi G, Baglietto L, English DR, Hankinson SE, Cox DG, Kraft P, Vatten LJ, Hveem K, Kumle M et al: Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics. 2009, 41: 585-590. 10.1038/ng.354.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 27-30. 28
Lee PH, Shatkay H: F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 2008, 820-824. 36
Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007, 8: 118-127. 10.1093/biostatistics/kxj037.
Article
PubMed
Google Scholar
Bertucci F, Birnbaum D: Reasons for breast cancer heterogeneity. J Biol. 2008, 7 (2): 6-10.1186/jbiol67.
Article
PubMed Central
PubMed
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM: Finding the missing heritability of complex diseases. Nature. 2009, 461: 747-753. 10.1038/nature08494.
Article
PubMed Central
CAS
PubMed
Google Scholar