Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011, 8 (10): 785-786. 10.1038/nmeth.1701.
Article
PubMed
CAS
Google Scholar
Shen HB, Chou KC: Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun. 2007, 363 (2): 297-303. 10.1016/j.bbrc.2007.08.140.
Article
PubMed
CAS
Google Scholar
Chou KC, Shen HB: Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun. 2007, 357 (3): 633-640. 10.1016/j.bbrc.2007.03.162.
Article
PubMed
CAS
Google Scholar
Hiller K, Grote A, Scheer M, Münch R, Jahn D: PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004, 32 (Web Server issue): W375-W379.
Article
PubMed Central
PubMed
CAS
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305 (3): 567-580. 10.1006/jmbi.2000.4315.
Article
PubMed
CAS
Google Scholar
Kall L, Krogh A, Sonnhammer EL: Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res. 2007, 35 (Web Server issue): W429-W432.
Article
PubMed Central
PubMed
Google Scholar
Shen H, Chou JJ: MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One. 2008, 3 (6): e2399-10.1371/journal.pone.0002399.
Article
PubMed Central
PubMed
Google Scholar
Elofsson A, von Heijne G: Membrane protein structure: prediction versus reality. Annu Rev Biochem. 2007, 76: 125-140. 10.1146/annurev.biochem.76.052705.163539.
Article
PubMed
CAS
Google Scholar
Tusnady GE, Simon I: Topology prediction of helical transmembrane proteins: how far have we reached?. Curr Protein Pept Sci. 2010, 11 (7): 550-561. 10.2174/138920310794109184.
Article
PubMed
CAS
Google Scholar
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S: Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002, 18 (2): 298-305. 10.1093/bioinformatics/18.2.298.
Article
PubMed
CAS
Google Scholar
Yu D, Shen H, Yang J: SOMRuler: a novel interpretable transmembrane helices predictor. IEEE Trans Nanobiosci. 2011, 10 (2): 121-129.
Article
Google Scholar
Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G: Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature. 2005, 433 (7024): 377-381. 10.1038/nature03216.
Article
PubMed
CAS
Google Scholar
Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G: Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature. 2007, 450 (7172): 1026-1030. 10.1038/nature06387.
Article
PubMed
CAS
Google Scholar
Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A: Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A. 2008, 105 (20): 7177-7181. 10.1073/pnas.0711151105.
Article
PubMed Central
PubMed
CAS
Google Scholar
Viklund H, Elofsson A: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics. 2008, 24 (15): 1662-1668. 10.1093/bioinformatics/btn221.
Article
PubMed
CAS
Google Scholar
Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS: Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol. 2008, 4 (11): e1000213-10.1371/journal.pcbi.1000213.
Article
PubMed Central
PubMed
Google Scholar
London E, Shahidullah K: Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Curr Opin Struct Biol. 2009, 19 (4): 464-472. 10.1016/j.sbi.2009.07.007.
Article
PubMed
CAS
Google Scholar
Shao S, Hegde RS: Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol. 2011, 27: 25-56. 10.1146/annurev-cellbio-092910-154125.
Article
PubMed Central
PubMed
CAS
Google Scholar
Laroum S, Tessier D, Duval B, Hao JK: A local search appproach for transmembrane segment and signal peptide discrimination. Lect Notes Comput Sci. 2010, 6023: 134-145. 10.1007/978-3-642-12211-8_12.
Article
Google Scholar
Laroum S, Duval B, Tessier D, Hao JK: Multi-neighborhood search for discrimination of signal peptides and transmembrane segments. Lect Notes Comput Sci. 2011, 6623: 111-122. 10.1007/978-3-642-20389-3_11.
Article
Google Scholar
Gumbart J, Chipot C, Schulten K: Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A. 2011, 108 (9): 3596-3601. 10.1073/pnas.1012758108.
Article
PubMed Central
PubMed
CAS
Google Scholar
Fawcett T: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL-2003-4. 2003, Palo Alto, CA: HP Labs
Google Scholar
Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157 (1): 105-132. 10.1016/0022-2836(82)90515-0.
Article
PubMed
CAS
Google Scholar
Engelman DM, Steitz TA, Goldman A: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986, 15: 321-353. 10.1146/annurev.bb.15.060186.001541.
Article
PubMed
CAS
Google Scholar
Zhao G, London E: An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci. 2006, 15 (8): 1987-2001. 10.1110/ps.062286306.
Article
PubMed Central
PubMed
CAS
Google Scholar
Zhao G, London E: Strong correlation between statistical transmembrane tendency and experimental hydrophobicity scales for identification of transmembrane helices. J Membr Biol. 2009, 229 (3): 165-168. 10.1007/s00232-009-9178-0.
Article
PubMed
CAS
Google Scholar
Park Y, Helms V: Prediction of the translocon-mediated membrane insertion free energies of protein sequences. Bioinformatics. 2008, 24 (10): 1271-1277. 10.1093/bioinformatics/btn114.
Article
PubMed
CAS
Google Scholar
Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S: A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci U S A. 2009, 106 (5): 1398-1403. 10.1073/pnas.0808584106.
Article
PubMed Central
PubMed
CAS
Google Scholar
Tsirigos KD, Hennerdal A, Kall L, Elofsson A: A guideline to proteome-wide alpha-helical membrane protein topology predictions. Proteomics. 2012, 12 (14): 2282-2294. 10.1002/pmic.201100495.
Article
PubMed
CAS
Google Scholar
Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004, 338 (5): 1027-1036. 10.1016/j.jmb.2004.03.016.
Article
PubMed
CAS
Google Scholar
Kall L, Krogh A, Sonnhammer EL: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics. 2005, 21 (Suppl 1): i251-i257. 10.1093/bioinformatics/bti1014.
Article
PubMed
Google Scholar
Rath EM, Tessier D, Campbell AA, Lee HC, Werner T, Salam NK, Lee LK, Church WB: A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions. BMC Bioinforma. 2013, 14: 111-10.1186/1471-2105-14-111.
Article
Google Scholar
Yang J, Jang R, Zhang Y, Shen HB: High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling. Bioinformatics. 2013, 29 (20): 2579-2587. 10.1093/bioinformatics/btt440.
Article
PubMed Central
PubMed
CAS
Google Scholar
von Heijne G: Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992, 225 (2): 487-494. 10.1016/0022-2836(92)90934-C.
Article
PubMed
CAS
Google Scholar
Rose P, Beran B, Bi C, Bluhm W, Dimitropoulos D, Goodsell D, Prlic A, Quesada M, Quinn G, Westbrook J, Young J, Yukich B, Zardecki C, Berman H, Bourne P: The RCSB protein data bank: redesigned web site and web services. Nucleic Acids Res. 2011, 39: D392-D401. 10.1093/nar/gkq1021.
Article
PubMed Central
PubMed
CAS
Google Scholar
Kozma D, Simon I, Tusnády GE: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2013, 41 (Database issue): D524-D529.
Article
PubMed Central
PubMed
CAS
Google Scholar
Melen K, Krogh A, von Heijne G: Reliability measures for membrane protein topology prediction algorithms. J Mol Biol. 2003, 327 (3): 735-744. 10.1016/S0022-2836(03)00182-7.
Article
PubMed
CAS
Google Scholar
Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E: Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinforma. 2009, 10: 136-10.1186/1471-2105-10-136.
Article
Google Scholar
Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006, 22 (13): 1658-1659. 10.1093/bioinformatics/btl158.
Article
PubMed
CAS
Google Scholar
Tusnady GE, Dosztanyi Z, Simon I: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 2005, 33 (Database issue): D275-D278.
Article
PubMed Central
PubMed
CAS
Google Scholar
Hoos HH, Stützle T: Stochastic Local Search: Foundations and Applications: Morgan Kaufmann. 2004, Morgan Kaufmann
Google Scholar
Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier performance in R. Bioinformatics. 2005, 21 (20): 3940-3941. 10.1093/bioinformatics/bti623.
Article
PubMed
CAS
Google Scholar