Yang CY, Dantzig AH, Pidgeon C: Intestinal peptide transport systems and oral drug availability. Pharm Res 1999, 16: 1331–1343. 10.1023/A:1018982505021
Article
CAS
PubMed
Google Scholar
Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M: Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: Application to prediction of Caco-2 cell permeability. Bioorganic & Medicinal Chemistry 2005, 13: 4721–4732. 10.1016/j.bmc.2005.04.076
Article
CAS
Google Scholar
Egan WJ, Lauri G: Prediction of intestinal permeability. Advanced Drug Delivery Reviews 2002, 54: 273–289. 10.1016/S0169-409X(02)00004-2
Article
CAS
PubMed
Google Scholar
Lin J, Sahakian DC, de Morais SM, Xu JJ, Polzer RJ, Winter SM: The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem 2003, 3: 1125–1154. 10.2174/1568026033452096
Article
PubMed
Google Scholar
Liang R, Fei YJ, Prasad PD, Rammamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH: Human intestinal H+/Peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995, 270: 6456–6463. 10.1074/jbc.270.12.6456
Article
CAS
PubMed
Google Scholar
Tamai I, Takanaga H, Maeda H, Sai Y, Ogihara T, Higashida H, Tsuji A: Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem Biophys Res Commun 1995, 214: 482–489. 10.1006/bbrc.1995.2312
Article
CAS
PubMed
Google Scholar
Ueda K, Cornwell MM, Gottesman MM, Pastan I, Roninson IB, Ling V, Riordan JR: The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 1986, 141: 956–962. 10.1016/S0006-291X(86)80136-X
Article
CAS
PubMed
Google Scholar
Pade V, Stavchansky S: Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci 1998, 87: 1604–1607. 10.1021/js980111k
Article
CAS
PubMed
Google Scholar
Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G: Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 1998, 6: 317–324.
CAS
PubMed
Google Scholar
Neuhott S, Unqell AL, Zamora I, Artursson P: pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur J Pharm Sci 2005, 25: 211–220.
Article
Google Scholar
Klopman G, Stefan LR, Saiakhov RD: ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 2002, 17: 253–263. 10.1016/S0928-0987(02)00219-1
Article
CAS
PubMed
Google Scholar
Hou TJ, Zhang W, Xia K, Qiao XB, Xu XJ: ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J Chem Inf Comput Sci 2004, 44: 1585–1600. 10.1021/ci049884m
Article
CAS
PubMed
Google Scholar
Ren S, Lien EJ: Caco-2 cell permeability vs human gastrointestinal absorption: QSPR analysis. Prog Drug Res 2000, 54: 1–23.
Article
CAS
PubMed
Google Scholar
Kulkarni A, Han Y, Hopfinger AJ: Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Inf Comput Sci 2002, 42: 331–342. 10.1021/ci010108d
Article
CAS
PubMed
Google Scholar
Seibert KJ: Quantitative structure-activity relationship modeling of peptide and protein behavior as a function of amino acid composition. J Agric Food Chem 2001, 49: 851–858. 10.1021/jf000718y
Article
Google Scholar
Wu J, Aluko RE, Nakai S: Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J Agric Food Chem 2006, 54: 732–738. 10.1021/jf051263l
Article
CAS
PubMed
Google Scholar
Burden FR, Winkler DA: Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model 2005, 23: 481–489. 10.1016/j.jmgm.2005.03.001
Article
CAS
PubMed
Google Scholar
Guan P, Doytchinova IA, Walshe VA, Borrow P, Flower DR: Analysis of peptide-protein binding using amino acid descriptors: Prediction and experimental verification for human histocompatibility complex HLA-A*0201. J Med Chem 2005, 48: 7418–7425. 10.1021/jm0505258
Article
CAS
PubMed
Google Scholar
Hou T, McLaughlin W, Lu B, Chen K, Wang W: Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Proteome Res 2006, 5: 32–43. 10.1021/pr0502267
Article
CAS
PubMed
Google Scholar
Kennedy T: Managing the drug discovery/development interface. Drug Discov Today 1997, 2: 436–444. 10.1016/S1359-6446(97)01099-4
Article
Google Scholar
Prentis RA, Lis Y, Walker SR: Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol 1988, 25: 387–396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gebauer S, Knutter I, Hartrodt B, Brandsch M, Neubert K, Thondorf I: Three-dimensional quantitative structure-activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem 2003, 46: 5725–5734. 10.1021/jm030976x
Article
CAS
PubMed
Google Scholar
Biegel A, Gebauer S, Hartrodt B, Brandsch M, Neubert K, Thondorf I: Three-dimensional quantitative structure-activity relationship analyses of β-lactam antibiotics and tripeptides as substrates of the mammalian H+/Peptide cotransporter PEPT1. J Med Chem 2005, 48: 4410–4419. 10.1021/jm048982w
Article
CAS
PubMed
Google Scholar
Andersen R, Jorgensen FS, Olsen L, Vabeno J, Thorn K, Nielsen CU, Steffansen B: Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1. Pharm Res 2006, 23: 483–492. 10.1007/s11095-006-9462-y
Article
CAS
PubMed
Google Scholar
Wessel MD, Jurs PC, Tolan JW, Muskal SM: Prediction of human intestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci 1998, 38: 726–735. 10.1021/ci980029a
Article
CAS
PubMed
Google Scholar
Polley MJ, Burden FR, Winkler DA: Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks. Aust J Chem 2005, 58: 859–863. 10.1071/CH05202
Article
CAS
Google Scholar
Creighton TE: Proteins: Structure and molecular properties. Volume 154. 2nd edition. WH Freeman; 1992:154.
Google Scholar
Cramer RD, Bunce JD, Patterson DE, Frank IE: Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 1988, 7: 18–25. 10.1002/qsar.19880070105
Article
Google Scholar
Burden FR, Winkler DA: Robust QSAR models Bayesian regularized neural networks. J Med Chem 1999, 42: 3183–3187. 10.1021/jm980697n
Article
CAS
PubMed
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001, 46: 3–26. 10.1016/S0169-409X(00)00129-0
Article
CAS
PubMed
Google Scholar
Ivanenkov VV, Menon AG: Peptide-mediated transcytosis of phage display vectors in MDCK cells. Biochem Biophys Res Commun 2000, 276: 251–257. 10.1006/bbrc.2000.3358
Article
CAS
PubMed
Google Scholar
Swaan PW: Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm Res 1998, 15: 826–834. 10.1023/A:1011908128045
Article
CAS
PubMed
Google Scholar
Mei H, Lian ZH, Zhou Y, Li SZ: A new set of amino acid descriptors and its application in peptide QSARs. Biopolymer (Peptide Science) 2005, 80: 775–786. 10.1002/bip.20296
Article
CAS
Google Scholar
The nnet of VR 7.2 package[http://www.r-project.org/]
Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143: 29–36.
Article
CAS
PubMed
Google Scholar
Springer C, Adalsteinsson H, Young MM, Kegelmeyer PW, Roe DC: PostDock: a structural, empirical approach to scoring protein ligand complexes. J Med Chem 2005, 48: 6821–6831. 10.1021/jm0493360
Article
CAS
PubMed
Google Scholar