Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet. 1999, 23: 185-188. 10.1038/13810.
Article
CAS
PubMed
Google Scholar
Rett A: Über ein eigenartiges hirnatrophisches Syndrom bei Hyperammonemie im Kindesalter. Wien Med Wochenschr. 1966, 116: 723-728.
CAS
PubMed
Google Scholar
Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al: Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010, 68: 944-950. 10.1002/ana.22124.
Article
PubMed
PubMed Central
Google Scholar
Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, et al: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004, 36: 339-341. 10.1038/ng1327.
Article
CAS
PubMed
Google Scholar
Kriaucionis S, Bird A: The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 2004, 32: 1818-1823. 10.1093/nar/gkh349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung BP, Jugloff DG, Zhang G, Logan R, Brown S, Eubanks JH: The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J Neurobiol. 2003, 55: 86-96. 10.1002/neu.10201.
Article
CAS
PubMed
Google Scholar
Koch C, Segev I: The role of single neurons in information processing. Nat Neurosci. 2000, 3 (Suppl): 1171-1177. 10.1038/81444.
Article
CAS
PubMed
Google Scholar
Hausser M, Spruston N, Stuart GJ: Diversity and dynamics of dendritic signaling. Science. 2000, 290: 739-744. 10.1126/science.290.5492.739.
Article
CAS
PubMed
Google Scholar
Kaufmann WE, Moser HW: Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex. 2000, 10: 981-991. 10.1093/cercor/10.10.981.
Article
CAS
PubMed
Google Scholar
Baj G, Patrizio A, Montalbano A, Sciancalepore M, Tongiorgi E: Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro. Front Cell Neurosci. 2014, 8: 18-10.3389/fncel.2014.00018.
Article
PubMed
PubMed Central
Google Scholar
Belichenko NP, Belichenko PV, Li HH, Mobley WC, Francke U: Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. J Comp Neurol. 2008, 508: 184-195. 10.1002/cne.21673.
Article
PubMed
Google Scholar
Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci. 2009, 12: 311-317. 10.1038/nn.2275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009, 29: 5051-5061. 10.1523/JNEUROSCI.0324-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maezawa I, Jin LW: Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci. 2010, 30: 5346-5356. 10.1523/JNEUROSCI.5966-09.2010.
Article
CAS
PubMed
Google Scholar
Nguyen MV, Felice CA, Du F, Covey MV, Robinson JK, Mandel G, et al: Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci Off J Soc Neurosci. 2013, 33: 18764-18774. 10.1523/JNEUROSCI.2657-13.2013.
Article
CAS
Google Scholar
Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, et al: Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech. 2012, 5: 733-745. 10.1242/dmm.011007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guy J, Gan J, Selfridge J, Cobb S, Bird A: Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007, 315: 1143-1147. 10.1126/science.1138389.
Article
CAS
PubMed
Google Scholar
Della Ragione F, Filosa S, Scalabri F, D’Esposito M: MeCP2 as a genome-wide modulator: the renewal of an old story. Front Genet. 2012, 3: 181-
CAS
PubMed
Google Scholar
Maxwell SS, Pelka GJ, Tam PP, El-Osta A: Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol. 2013, 10: 1741-1757. 10.4161/rna.26921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugino K, Hempel CM, Okaty BW, Arnson HA, Kato S, Dani VS, et al: Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes. J Neurosci Off J Soc Neurosci. 2014, 34: 12877-12883. 10.1523/JNEUROSCI.2674-14.2014.
Article
CAS
Google Scholar
Peddada S, Yasui DH, LaSalle JM: Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet. 2006, 15: 2003-2014. 10.1093/hmg/ddl124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertulat B, De Bonis ML, Della Ragione F, Lehmkuhl A, Milden M, Storm C, et al: MeCP2 dependent heterochromatin reorganization during neural differentiation of a novel Mecp2-deficient embryonic stem cell reporter line. PLoS One. 2012, 7: e47848-10.1371/journal.pone.0047848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singleton MK, Gonzales ML, Leung KN, Yasui DH, Schroeder DI, Dunaway K, et al: MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation. Neurobiol Dis. 2011, 43: 190-200. 10.1016/j.nbd.2011.03.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY: Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002, 11: 115-124. 10.1093/hmg/11.2.115.
Article
CAS
PubMed
Google Scholar
Greco D, Volpicelli F, Di Lieto A, Leo D, Perrone-Capano C, Auvinen P, et al: Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures. PLoS One. 2009, 4: e4977-10.1371/journal.pone.0004977.
Article
PubMed
PubMed Central
Google Scholar
Langhammer CG, Previtera ML, Sweet ES, Sran SS, Chen M, Firestein BL: Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A. 2010, 77: 1160-1168. 10.1002/cyto.a.20954.
Article
PubMed
PubMed Central
Google Scholar
Colantuoni C, Jeon OH, Hyder K, Chenchik A, Khimani AH, Narayanan V, et al: Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol Dis. 2001, 8: 847-865. 10.1006/nbdi.2001.0428.
Article
CAS
PubMed
Google Scholar
Forbes-Lorman RM, Kurian JR, Auger AP: MeCP2 regulates GFAP expression within the developing brain. Brain Res. 2014, 1543: 151-158. 10.1016/j.brainres.2013.11.011.
Article
CAS
PubMed
Google Scholar
Yasui DH, Xu H, Dunaway KW, Lasalle JM, Jin LW, Maezawa I: MeCP2 modulates gene expression pathways in astrocytes. Mol Autism. 2013, 4: 3-10.1186/2040-2392-4-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al: MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008, 320: 1224-1229. 10.1126/science.1153252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci Off J Soc Neurosci. 2008, 28: 264-278. 10.1523/JNEUROSCI.4178-07.2008.
Article
CAS
Google Scholar
Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al: The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013, 16: 1896-1905. 10.1038/nn.3554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai J, Bercury KK, Ahrendsen JT, Macklin WB: Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J Neurosci Off J Soc Neurosci. 2015, 35: 4386-4402. 10.1523/JNEUROSCI.4962-14.2015.
Article
CAS
Google Scholar
Mela A, Goldman JE: The tetraspanin KAI1/CD82 is expressed by late- lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination. J Neurosci Off J Soc Neurosci. 2009, 29: 11172-11181. 10.1523/JNEUROSCI.3075-09.2009.
Article
CAS
Google Scholar
Terada N, Baracskay K, Kinter M, Melrose S, Brophy PJ, Boucheix C, et al: The tetraspanin protein, CD9, is expressed by progenitor cells committed to oligodendrogenesis and is linked to beta1 integrin, CD81, and Tspan-2. Glia. 2002, 40: 350-359. 10.1002/glia.10134.
Article
PubMed
Google Scholar
Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH: Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol. 2009, 66: 843-857. 10.1002/ana.21927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillman AA, Hauser DN, Gibbs JR, Nalls MA, McCoy MK, Rudenko IN, et al: mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci. 2013, 16: 499-506. 10.1038/nn.3332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al: Microglia modulate wiring of the embryonic forebrain. Cell Rep. 2014, 8: 1271-1279. 10.1016/j.celrep.2014.07.042.
Article
CAS
PubMed
Google Scholar
Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, et al: Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci. 2006, 9: 99-107. 10.1038/nn1618.
Article
CAS
PubMed
Google Scholar
Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL: Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci. 2004, 7: 145-152. 10.1038/nn1179.
Article
CAS
PubMed
Google Scholar
Chen M, Lucas KG, Akum BF, Balasingam G, Stawicki TM, Provost JM, et al: A novel role for snapin in dendrite patterning: interaction with cypin. Mol Biol Cell. 2005, 16: 5103-5114. 10.1091/mbc.E05-02-0165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY: Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009, 18: 2431-2442. 10.1093/hmg/ddp181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao YT, Goffin D, Johnson BS, Zhou Z: Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol Dis. 2013, 59: 257-266. 10.1016/j.nbd.2013.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al: Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015, 522: 89-93. 10.1038/nature14319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001, 27: 327-331. 10.1038/85906.
Article
CAS
PubMed
Google Scholar
Kishi N, Macklis JD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004, 27: 306-321. 10.1016/j.mcn.2004.07.006.
Article
CAS
PubMed
Google Scholar
Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y: Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2- deficient mice. J Neuropathol Exp Neurol. 2005, 64: 537-544. 10.1093/jnen/64.6.537.
Article
CAS
PubMed
Google Scholar
Tomassy GS, Morello N, Calcagno E, Giustetto M: Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome. J Neurochem. 2014, 131: 115-127. 10.1111/jnc.12803.
Article
CAS
PubMed
Google Scholar
Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Loven J, et al: Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell. 2013, 13: 446-458. 10.1016/j.stem.2013.09.001.
Article
PubMed
PubMed Central
Google Scholar
El-Khoury R, Panayotis N, Matagne V, Ghata A, Villard L, Roux JC: GABA and glutamate pathways are spatially and developmentally affected in the brain of Mecp2-deficient mice. PLoS One. 2014, 9: e92169-10.1371/journal.pone.0092169.
Article
PubMed
PubMed Central
Google Scholar
Mody M, Cao Y, Cui Z, Tay KY, Shyong A, Shimizu E, et al: Genome-wide gene expression profiles of the developing mouse hippocampus. Proc Natl Acad Sci U S A. 2001, 98: 8862-8867. 10.1073/pnas.141244998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al: A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008, 135: 738-748. 10.1016/j.cell.2008.10.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okaty BW, Sugino K, Nelson SB: A quantitative comparison of cell-type- specific microarray gene expression profiling methods in the mouse brain. PLoS One. 2011, 6: e16493-10.1371/journal.pone.0016493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001, 27: 322-326. 10.1038/85899.
Article
CAS
PubMed
Google Scholar
Jordan C, Li HH, Kwan HC, Francke U: Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet. 2007, 8: 36-10.1186/1471-2350-8-36.
Article
PubMed
PubMed Central
Google Scholar
Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, et al: FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet. 2007, 16: 640-650. 10.1093/hmg/ddm007.
Article
CAS
PubMed
Google Scholar
Urdinguio RG, Lopez-Serra L, Lopez-Nieva P, Alaminos M, Diaz-Uriarte R, Fernandez AF, et al: Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One. 2008, 3: e3669-10.1371/journal.pone.0003669.
Article
PubMed
PubMed Central
Google Scholar
Gutierrez H, O’Keeffe GW, Gavalda N, Gallagher D, Davies AM: Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA. J Neurosci Off J Soc Neurosci. 2008, 28: 8246-8256. 10.1523/JNEUROSCI.1941-08.2008.
Article
CAS
Google Scholar
Barbosa AC, Kim MS, Ertunc M, Adachi M, Nelson ED, McAnally J, et al: MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A. 2008, 105: 9391-9396. 10.1073/pnas.0802679105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto Y, Yamauchi J, Tanoue A, Wu C, Mobley WC: TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci U S A. 2006, 103: 10444-10449. 10.1073/pnas.0603914103.
Article
CAS
PubMed
PubMed Central
Google Scholar
di Porzio U, Daguet MC, Glowinski J, Prochiantz A: Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature. 1980, 288: 370-373. 10.1038/288370a0.
Article
CAS
PubMed
Google Scholar
Fiszman ML, Zuddas A, Masana MI, Barker JL, di Porzio U: Dopamine synthesis precedes dopamine uptake in embryonic rat mesencephalic neurons. J Neurochem. 1991, 56: 392-399. 10.1111/j.1471-4159.1991.tb08164.x.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014, 30: 2114-2120. 10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009, 25: 1105-1111. 10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015, 31: 166-169. 10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Rau A, Gallopin M, Celeux G, Jaffrezic F: Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics. 2013, 29: 2146-2152. 10.1093/bioinformatics/btt350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Nishiyama T, Shimizu K, Kadota K: TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics. 2013, 14: 219-10.1186/1471-2105-14-219.
Article
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26: 139-140. 10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al: TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003, 34: 374-378.
CAS
PubMed
Google Scholar
Tripathi KP, Evangelista D, Zuccaro A, Guarracino MR. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA. PLoS ONE 2015; 10 (11):e0140268.
Article
PubMed
PubMed Central
Google Scholar
Huang da W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923.
Article
PubMed
Google Scholar
Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57. 10.1038/nprot.2008.211.
Article
PubMed
Google Scholar
Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C: Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014, 15: 293-10.1186/1471-2105-15-293.
Article
PubMed
PubMed Central
Google Scholar