Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, Mukherjee S, Ancona N. Comparative study of gene-set enrichment methods. BMC Bioinformatics. 2009;10(1):1.
Article
Google Scholar
Greenblum SI, Efroni S, Schaefer CF, Buetow KH. The PathOlogist: an automated tool for pathway-centric analysis. BMC Bioinformatics. 2011;12(1):1.
Article
Google Scholar
Wu MC, Lin X. Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene-sets and pathways. Stat Methods Med Res. 2009;18(6):577–93.
Article
PubMed
PubMed Central
Google Scholar
Yaari G, Bolen CR, Thakar J, Kleinstein SH. Quantitative set analysis for gene expression: a method to quantify gene-set differential expression including gene-gene correlations. Nucleic Acids Res. 2013;41(18):gkt660.
Thakar J, Hartmann BM, Marjanovic N, Sealfon SC, Kleinstein SH. Comparative analysis of anti-viral transcriptomics reveals novel effects of influenza immune antagonism. BMC Immunol. 2015;16(1):46.
Article
PubMed
PubMed Central
Google Scholar
Thakar J, Mohanty S, West AP, Joshi SR, Ueda I, Wilson J, Meng H, Blevins TP, Tsang S, Trentalange M, Siconolfi B. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging. 2015;7(1):38–52.
Article
PubMed
PubMed Central
Google Scholar
Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoires analyses. Nature reviews. Immunology. 2014;14(4):271.
CAS
PubMed
PubMed Central
Google Scholar
Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, Stichweh D, Blankenship D, Li L, Munagala I, Bennett L. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity. 2008;29(1):150–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15(2):195–204.
Article
PubMed
Google Scholar
Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-Snipes L, Ranganathan R, Zeitner B, Bjork A, Anderson D. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity. 2013;38(4):831–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, Wittkowski KM, Piqueras B, Banchereau J, Palucka AK, Chaussabel D. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007;109(5):2066–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belacel N, Wang Q, Cuperlovic-Culf M. Clustering methods for microarray gene expression data. OMICS. 2006;10(4):507–31.
Article
CAS
PubMed
Google Scholar
Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng. 2004;16(11):1370–86.
Article
Google Scholar
Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC. Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics. 2006;22(19):2405–12.
Article
CAS
PubMed
Google Scholar
Kerr G, Ruskin HJ, Crane M, Doolan P. Techniques for clustering gene expression data. Comput Biol Med. 2008;38(3):283–93.
Article
CAS
PubMed
Google Scholar
Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci. 1984;10(2-3):191–203.
Article
Google Scholar
Bezdek JC. Pattern recognition with fuzzy objective function algorithms. Springer US: Springer Science & Business Media; 2013.
Katanic D, Khan A, Thakar J. PathCellNet: Cell-type specific pathogen-response network explorer. J Immunol Methods. 2016;439:15–22.
Article
CAS
PubMed
Google Scholar
Priness I, Maimon O, Ben-Gal I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics. 2007;8(1):1.
Article
Google Scholar
D’haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics. 2000;16(8):707–26.
Article
PubMed
Google Scholar
Hartmann BM, Thakar J, Albrecht RA, Avey S, Zaslavsky E, Marjanovic N, Chikina M, Fribourg M, Hayot F, Schmolke M, Meng H. Human dendritic cell response signatures distinguish 1918, pandemic, and seasonal H1N1 influenza viruses. J Virol. 2015;89(20):10190–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28(2):129–37.
Article
Google Scholar
Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979;28(1):100–8.
Google Scholar
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Series B Stat Methodology. 2001;63(2):411–23.
Article
Google Scholar
Ding C, He X. K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on machine learning. 2004. p. 29. ACM.
Chapter
Google Scholar
Dembélé D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics. 2003;19(8):973–80.
Article
PubMed
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Möller-Levet CS, Klawonn F, Cho KH, Yin H, Wolkenhauer O. Clustering of unevenly sampled gene expression time-series data. Fuzzy Set Syst. 2005;152(1):49–66.
Article
Google Scholar
Tan PN. Introduction to data mining. India: Pearson Education; 2006.
Google Scholar
Steinley D. Local optima in K-means clustering: what you don’t know may hurt you. Psychol Methods. 2003;8(3):294.
Article
PubMed
Google Scholar
Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236–44.
Article
Google Scholar
Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature. 1998;393(6684):440–2.
Article
CAS
PubMed
Google Scholar
Opsahl T, Panzarasa P. Clustering in weighted networks. Soc Networks. 2009;31(2):155–63.
Article
Google Scholar
Datta S, Datta S. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics. 2006;7(1):397.
Article
PubMed
PubMed Central
Google Scholar
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1(6):519–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakar J, Schmid S, Duke JL, García-Sastre A, Kleinstein SH. Overcoming NS1-mediated immune antagonism involves both interferon-dependent and independent mechanisms. J Interferon Cytokine Res. 2013;33(11):700–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaslavsky E, Nudelman G, Marquez S, Hershberg U, Hartmann BM, Thakar J, Sealfon SC, Kleinstein SH. Reconstruction of regulatory networks through temporal enrichment profiling and its application to H1N1 influenza viral infection. BMC Bioinformatics. 2013;14 Suppl 6:S1.
Article
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):1.
Article
Google Scholar
Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14(10):719–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem. 1995;270(36):21181–7.
Article
CAS
PubMed
Google Scholar
Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature. 2001;410(6828):608–11.
Article
CAS
PubMed
Google Scholar
Qiu X, Wu S, Hilchey SP, Thakar J, Liu ZP, Welle SL, Henn AD, Wu H, Zand MS. Diversity in compartmental dynamics of gene regulatory networks: the immune response in primary influenza a infection in mice. PLoS One. 2015;10(9):e0138110.
Article
PubMed
PubMed Central
Google Scholar
Godec J, Tan Y, Liberzon A, Tamayo P, Bhattacharya S, Butte AJ, Mesirov JP, Haining WN. Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation. Immunity. 2016;44(1):194–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tari L, Baral C, Kim S. Fuzzy c-means clustering with prior biological knowledge. J Biomed Inform. 2009;42(1):74–81.
Article
PubMed
Google Scholar
Fu L, Medico E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics. 2007;8(1):1.
Article
Google Scholar
Torres A, Nieto JJ. Fuzzy logic in medicine and bioinformatics. Biomed Res Int. 2006;26:2006.
Google Scholar
Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34(2):166–76.
Article
CAS
PubMed
Google Scholar
Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol. 2002;3(11):1.
Article
Google Scholar