De Ligt J, Willemsen MH, Van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, De Vries P, Gilissen C, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012; 367(20):1921–9.
Article
CAS
PubMed
Google Scholar
Cheng L, Jiang Y, Wang Z, Shi H, Sun J, Yang H, Zhang S, Hu Y, Zhou M. Dissim: an online system for exploring significant similar diseases and exhibiting potential therapeutic drugs. Sci Rep. 2016; 6:30024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Zhou M, Shi H, Ju H, Jiang Q, Cheng L. Measuring disease similarity and predicting disease-related ncrnas by a novel method. BMC Med Genomics. 2017; 10(5):71. https://doi.org/10.1186/s12920-017-0315-9.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Zhao L, Liu Z, Ju H, Shi H, Xu P, Wang Y, Cheng L. Dissetsim: an online system for calculating similarity between disease sets. J Biomed Semant. 2017; 8(1):28.
Article
Google Scholar
Zemojtel T, Köhler S, Mackenroth L, Jäger M, Hecht J, Krawitz P, Graul-Neumann L, Doelken S, Ehmke N, Spielmann M, et al. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci Transl Med. 2014; 6(252):252–123252123.
Article
Google Scholar
Robinson PN. Deep phenotyping for precision medicine. Hum Mutat. 2012; 33(5):777.
Article
PubMed
Google Scholar
Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet. 2006; 14(5):535–42.
Article
CAS
PubMed
Google Scholar
Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003; 33:228–37.
Article
CAS
PubMed
Google Scholar
Oti M, Brunner HG. The modular nature of genetic diseases. Clin Genet. 2007; 71(1):1–11.
Article
CAS
PubMed
Google Scholar
Liu G, Jiang Q. Alzheimer’s disease cd33 rs3865444 variant does not contribute to cognitive performance. Proc Natl Acad Sci. 2016; 113(12):1589–90.
Article
Google Scholar
Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity. J Biomed Inform. 2012; 45(2):363–71.
Article
PubMed
Google Scholar
Deans AR, Lewis SE, Huala E, Anzaldo SS, Ashburner M, Balhoff JP, Blackburn DC, Blake JA, Burleigh JG, Chanet B, et al. Finding our way through phenotypes. PLoS Biol. 2015; 13(1):1002033.
Article
Google Scholar
Peng J, Bai K, Shang X, Wang G, Xue H, Jin S, Cheng L, Wang Y, Chen J. Predicting disease-related genes using integrated biomedical networks. BMC Genomics. 2017; 18(1):1043.
Article
PubMed
PubMed Central
Google Scholar
Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015; 12(9):841–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freimer N, Sabatti C. The human phenome project. Nat Genet. 2003; 34(1):15.
Article
CAS
PubMed
Google Scholar
Jiang L, Gong B, Xi C, Tao L, Chao W, Fan Z, Li C, Xiang L, Rao S, Xia L. Dosim: An r package for similarity between diseases based on disease ontology. Bmc Bioinformatics. 2011; 12(1):266.
Article
Google Scholar
Batet M, Sánchez D, Valls A. An ontology-based measure to compute semantic similarity in biomedicine. J Biomed Inform. 2011; 44(1):118–25.
Article
PubMed
Google Scholar
Ji X, Ritter A, Yen PY. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews. J Biomed Inform. 2017; 69:33–42.
Article
PubMed
Google Scholar
Jiang R, Gan M, He P. Constructing a gene semantic similarity network for the inference of disease genes. BMC Syst Biol. 2011; 5(2):1–11.
Google Scholar
Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási AL. Disease networks. uncovering disease-disease relationships through the incomplete interactome. Science. 2015; 347(6224):1257601.
Article
PubMed
PubMed Central
Google Scholar
Groza T, Kohler S, Moldenhauer D, Vasilevsky N, Baynam G, Zemojtel T, Schriml LM, Kibbe WA, Schofield PN, Beck T, et al. The human phenotype ontology: Semantic unification of common and rare disease. Am J Hum Genet. 2015; 97(1):111–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le D, Dang V. Ontology-based disease similarity network for disease gene prediction. Vietnam J Comput Sci. 2016; 3(3):197–205.
Article
Google Scholar
Peng J, Xue H, Shao Y, Shang X, Wang Y, Chen J. A novel method to measure the semantic similarity of hpo terms. Int J Data Min Bioinforma. 2017; 17(2):173–88.
Article
Google Scholar
Liang C, Jie S, Xu W, Dong L, Yang H, Meng Z. Oahg: an integrated resource for annotating human genes with multi-level ontologies. Sci Rep. 2016; 6:34820.
Article
Google Scholar
Hao J, Sun J, Chen G, Wang Z, Yu C, Ming Z. Efficient and robust emergence of norms through heuristic collective learning. ACM Trans Auton Adapt Syst (TAAS). 2017; 12(4):23.
Google Scholar
Hao J, Huang D, Cai Y, Leung H-f. The dynamics of reinforcement social learning in networked cooperative multiagent systems. Eng Appl Artif Intell. 2017; 58:111–22.
Article
Google Scholar
Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, Mundlos C, Horn D, Mundlos S, Robinson PN. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009; 85(4):457–64.
Article
PubMed
PubMed Central
Google Scholar
Masino AJ, Dechene ET, Dulik MC, Wilkens A, Spinner NB, Krantz ID, Pennington JW, Robinson PN, White PS. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology. BMC Bioinformatics. 2014; 15(1):248.
Article
PubMed
PubMed Central
Google Scholar
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83(5):610–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahanda I, Funk C, Verspoor K, Ben-Hur A. Phenostruct: Prediction of human phenotype ontology terms using heterogeneous data sources. F1000research. 2015; 4:259.
PubMed
PubMed Central
Google Scholar
Deng Y, Gao L, Wang B, Guo X. Hposim: An r package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology. Plos ONE. 2015; 10(2):0115692.
Google Scholar
Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, Simeoni I, Pillois X, Attwood A, Austin S. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 2015; 7(1):36.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Wang H, Lu J, Hui W, Wang Y, Shang X. Identifying term relations cross different gene ontology categories. BMC Bioinformatics. 2017; 18(16):573. https://doi.org/10.1186/s12859-017-1959-3.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Lu J, Shang X, Chen J. Identifying consistent disease subnetworks using dnet. Methods. 2017; 131:104–10.
Article
CAS
PubMed
Google Scholar
Peng J, Zhang X, Hui W, Lu J, Li Q, Liu S, Shang X. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach. BMC Syst Biol. 2018;12(suppl 12). in press.
Hu J, Shang X. Detection of network motif based on a novel graph canonization algorithm from transcriptional regulation networks. Molecules. 2017; 22(12):2194.
Article
Google Scholar
Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP. Next generation software for functional trend analysis. Bioinformatics. 2009; 25(22):3043–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al. Proc Natl Acad Sci U S A. 2004; 101(16):6062–7.
Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV. Transfac register: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003; 31(1):374–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, et al. A proteome-scale map of the human interactome network. Cell. 2014; 159(5):1212–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatesan K, Rual J, Vazquez A, Stelzl U, Lemmens I, Hirozanekishikawa T, Hao T, Zenkner M, Xin X, Goh K, et al. An empirical framework for binary interactome mapping. Nat Methods. 2009; 6(1):83–90.
Article
CAS
PubMed
Google Scholar
Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005; 122(6):957.
Article
CAS
PubMed
Google Scholar
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N. Towards a proteome-scale map of the human protein¿protein interaction network. Nature. 2005; 437(7062):1173–8.
Article
CAS
PubMed
Google Scholar
Yu H, Leah T, Stanley T, Evan W, Fana G, Fan C, Nenad S, Tomoko HK, Edward R, Yang X. Leveraging the power of next-generation sequencing to generate interactome datasets. Nat Methods. 2011; 8(6):478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E. Mint, the molecular interaction database: 2012 update. Nucleic Acids Res. 2007; 35(Database issue):572–4.
Google Scholar
Stark C, Breitkreutz BJ, Chatraryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van AK, Wang X, Shi X. The biogrid interaction database: 2011 update. Nucleic Acids Res. 2015; 43(Database issue):470.
Google Scholar
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A. Human protein reference database–2009 update. Nucleic Acids Res. 2009; 37(Database issue):767.
Article
Google Scholar
Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008; 105(29):9880.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruepp A, Brauner B, Dungerkaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Stümpflen V. Corum: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 2010; 38(Database issue):497.
Article
Google Scholar
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. Phosphositeplus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012; 40(Database issue):261.
Article
Google Scholar
Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker EE. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal. 2011; 4(189):8.
Article
Google Scholar
Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Berlin: Springer Berlin Heidelberg: 2009. p. 1–4.
Google Scholar
Lewis-Beck MS. “R-squared” Thousand Oaks, Calif. The Sage Encyclopedia of Social Science Research Methods. 2004. http://works.bepress.com/michael_lewis_beck/126/.
Myers L, Sirois MJ. Spearman Correlation Coefficients, Differences between. In: Wiley StatsRef: Statistics Reference Online. Wiley: 2014. https://doi.org/10.1002/9781118445112.stat02802.
McKnight PE, Najab J. Mann-Whitney U Test. In: The Corsini Encyclopedia of Psychology. Wiley: 2010. https://doi.org/10.1002/9780470479216.corpsy0524.