Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012; 61(6):1315–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newgard CB, Pessin JE. J Gerontol A Biomed Sci Med Sci. 2014; 69(Suppl_1):21–7.
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005; 39:359–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci Rep. 2015; 5:18494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep. 2011; 1:134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miquel J, Economos A, Fleming J, Johnson J. Mitochondrial role in cell aging. Exp Gerontol. 1980; 15(6):575–91.
Article
CAS
PubMed
Google Scholar
Kauppila TE, Kauppila JH, Larsson N-G. Mammalian mitochondria and aging: an update. Cell Metab. 2017; 25(1):57–71.
Article
CAS
PubMed
Google Scholar
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443(7113):787.
Article
CAS
PubMed
Google Scholar
Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, et al.Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitopark transgenic mice. Antioxid Redox Signal. 2017; 14:1048–1066.
Article
CAS
Google Scholar
Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Dis. 2010; 9(6):447.
Article
CAS
Google Scholar
Green DR. Cancer and apoptosis: Who is built to last?Cancer Cell. 2017; 31(1):2–4.
Article
CAS
PubMed
Google Scholar
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget. 2016; 7(13):15410.
PubMed
PubMed Central
Google Scholar
Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. In vitro aging of ß-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 1991; 563(1):311–4.
Article
CAS
PubMed
Google Scholar
Jack CR, Wiste HJ, Weigand SD, Therneau TM, Knopman DS, Lowe V, Vemuri P, Mielke MM, Roberts RO, Machulda MM, et al.Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 2017; 16(6):435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy J, Selkoe DJ. The amyloid hypothesis of alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297(5580):353–6.
Article
CAS
PubMed
Google Scholar
Vemuri P, Knopman DS, Lesnick TG, Przybelski SA, Mielke MM, Graff-Radford J, Murray ME, Roberts RO, Vassilaki M, Lowe VJ, et al.Evaluation of amyloid protective factors and alzheimer disease neurodegeneration protective factors in elderly individuals. JAMA Neurol. 2017; 6:718–726.
Article
Google Scholar
Semba RD, Nicklett EJ, Ferrucci L. J Gerontol A Biomed Sci Med Sci. 2010; 65(9):963–75.
Yu T, Lin L. Advanced glycation end products accumulated with aging inhibit colonic smooth muscle contraction by upregulation of bk channel î’1-subunit. Gastroenterology. 2017; 152(5):911.
Article
Google Scholar
Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara H. J Gerontol Ser A Biol Sci Med Sci. 2007; 62(4):427–33.
Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003; 21(1):3–12.
Article
CAS
PubMed
Google Scholar
Wannamethee SG, Welsh P, Papacosta O, Ellins EA, Halcox JP, Whincup PH, Sattar N. Circulating soluble receptor for advanced glycation end product: Cross-sectional associations with cardiac markers and subclinical vascular disease in older men with and without diabetes. Atherosclerosis. 2017; 264:36–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riehl A, Németh J, Angel P, Hess J. The receptor rage: Bridging inflammation and cancer. Cell Commun Signal. 2009; 7(1):12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. Hmgb1 and rage in inflammation and cancer. Annu Rev Immunol. 2009; 28:367–88.
Article
CAS
Google Scholar
Turner D. Chapter one-the role of advanced glycation end-products in cancer disparity. Adv Cancer Res. 2017; 133:1–22.
Article
CAS
PubMed
Google Scholar
Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002; 33(5):611–9.
Article
CAS
PubMed
Google Scholar
Hyttinen JM, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. Dna damage response and autophagy in the degeneration of retinal pigment epithelial cells–implications for age-related macular degeneration (amd). Ageing Res Rev. 2017; 36:64–77.
Article
CAS
PubMed
Google Scholar
Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007; 128(1):92–105.
Article
CAS
PubMed
Google Scholar
Blomberg BB, Frasca D. Quantity, not quality, of antibody response decreased in the elderly. J Clin Investig. 2011; 121(8):2981–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Targonski PV, Jacobson RM, Poland GA. Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine. 2007; 25(16):3066–9.
Article
CAS
PubMed
Google Scholar
Marco M-G, Rebeca A-A. When aging reaches CD4+ T-Cells: Phenotypic and functional changes. Front Immunol. 2013; 4:107.
Google Scholar
Lefebvre JS, Haynes L. Aging of the CD4 T cell compartment. Open Longevity Sci. 2012; 6:83.
Article
CAS
Google Scholar
Zhao M, Qin J, Yin H, Tan Y, Liao W, Liu Q, Luo S, He M, Liang G, Shi Y, et al. Distinct epigenomes in CD4+ T cells of newborns, middle-ages and centenarians. Sci Rep. 2016; 6:38411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, et al.The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015; 6:8570.
Article
CAS
PubMed
Google Scholar
Cook DJ, Nielsen J. Genome-scale metabolic models applied to human health and disease. Wiley Interdiscip Rev Syst Biol Med. 2017; 9(6):e1393.
Article
Google Scholar
Eyassu F, Angione C. Modelling pyruvate dehydrogenase under hypoxia and its role in cancer metabolism. Royal Soc Open Sci. 2017; 4(10):170360.
Article
Google Scholar
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al.A pathology atlas of the human cancer transcriptome. Science. 2017; 357(6352):2507.
Article
CAS
Google Scholar
Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep. 2017; 7:41241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angione C, Conway M, Lió P. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinformatics. 2016; 17(4):83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samal SS, Radulescu O, Weber A, Fröhlich H. Linking metabolic network features to phenotypes using sparse group lasso. Bioinformatics. 2017; 33(21):3445–53.
Article
PubMed
Google Scholar
Yaneske E, Angione C. A data-and model-driven analysis reveals the multi-omic landscape of ageing. In: International Conference on Bioinformatics and Biomedical Engineering. Berlin: Springer: 2017. p. 145–54.
Google Scholar
Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 2017; 21:29–36.
Article
PubMed
PubMed Central
Google Scholar
Raj T, Rothamel K, Mostafavi S, Ye C, Lee M, Replogle JM, Feng T, Lee M, Asinovski N, Frohlich I, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014; 344(6183):519–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4(2):249–64.
Article
PubMed
Google Scholar
Han F, Li G, Dai S, Huang J. Genome-wide metabolic model to improve understanding of CD4+ T cell metabolism, immunometabolism and application in drug design. Mol BioSyst. 2016; 12(2):431–43.
Article
CAS
PubMed
Google Scholar
Angione C. Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics. 2017; 34(3):562.
Google Scholar
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis?Nat Biotechnol. 2010; 28(3):245–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, Lewis NE. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 2017; 4(3):318–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashaf SS, Angione C, Lió P. Making life difficult for clostridium difficile: augmenting the pathogen’s metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol. 2017; 11(1):25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryu JY, Kim HU, Lee SY. Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci. 2017; 114(45):201713050.
Article
CAS
Google Scholar
O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015; 161(5):971–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Angione C, Pratanwanich N, Lió P. A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation. ACS Synth Biol. 2015; 4(8):880–9.
Article
CAS
PubMed
Google Scholar
Palsson B. Systems Biology: Constraint-based Reconstruction and Analysis. 2nd ed. Cambridge: Cambridge University Press; 2015.
Book
Google Scholar
Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Brief Bioinform. 2017;:1–18.
Angione C, Lió P. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep. 2015; 5:15147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20:53–65.
Article
Google Scholar
Lê S, Josse J, Husson F, et al.FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008; 25(1):1–18.
Article
Google Scholar
Hoerl A, Kennard R. Ridge regression, in ’Encyclopedia of Statistical Sciences’. vol 8. 1988.
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol). 1996; 58(1):267–88.
Google Scholar
Zou H, Hastie T. J R Stat Soc Ser B (Stat Method). 2005; 67(2):301–20.
Omran MG, Engelbrecht AP, Salman A. An overview of clustering methods. Intell Data Anal. 2007; 11(6):583–605.
Article
Google Scholar
Kaiser HF. The application of electronic computers to factor analysis. Educ Psychol Meas. 1960; 20(1):141–51.
Article
Google Scholar
Bendixen MT. Compositional perceptual mapping using chi-squared trees analysis and correspondence analysis. J Mark Manag. 1995; 11(6):571–81.
Article
Google Scholar
Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev. 2006; 127(1):79–84.
Article
CAS
PubMed
Google Scholar
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem. 2017; 432(1–2):1–18.
Google Scholar
Lanske B, Razzaque MS. Vitamin D and aging: old concepts and new insights. J Nutr Biochem. 2007; 18(12):771–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hin H, Tomson J, Newman C, Kurien R, Lay M, Cox J, Sayer J, Hill M, Emberson J, Armitage J, et al.Optimum dose of vitamin D for disease prevention in older people: BEST-D trial of vitamin D in primary care. Osteoporos Int. 2017; 28(3):841–51.
Article
CAS
PubMed
Google Scholar
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology. 2012; 4(3):253–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W-H, Wong H-K, Serrano J, Randhawa M, Kaur S, Southall MD, Parsa R. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo. Arch Dermatol Res. 2017; 309(4):275–83.
Article
CAS
PubMed
Google Scholar
Reed MJ, Damodarasamy M, Chan CK, Johnson MN, Wight TN, Vernon RB. Cleavage of hyaluronan is impaired in aged dermal wounds. Matrix Biol. 2013; 32(1):45–51.
Article
CAS
PubMed
Google Scholar
Damodarasamy M, Johnson RS, Bentov I, MacCoss MJ, Vernon RB, Reed MJ. Hyaluronan enhances wound repair and increases collagen iii in aged dermal wounds. Wound Repair Regen. 2014; 22(4):521–6.
Article
PubMed
PubMed Central
Google Scholar
Arrich J, Piribauer F, Mad P, Schmid D, Klaushofer K, Müllner M. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: systematic review and meta-analysis. Can Med Assoc J. 2005; 172(8):1039–43.
Article
Google Scholar
Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003; 5(2):54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martel-Pelletier J, Raynauld J-P, Mineau F, Abram F, Paiement P, Delorme P, Pelletier J-P. Levels of serum biomarkers from a two-year multicentre trial are associated with treatment response on knee osteoarthritis cartilage loss as assessed by magnetic resonance imaging: an exploratory study. Arthritis Res Ther. 2017; 19(1):169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Russell RM. The aging process as a modifier of metabolism. Am J Clin Nutr. 2000; 72(2):529–32.
Article
Google Scholar
Thiele J, Schroeter C, Hsieh S, Podda M, Packer L. The antioxidant network of the stratum corneum. In: Oxidants and Antioxidants in Cutaneous Biology. vol 29. Basel: Karger Publishers: 2001. p. 26–42.
Google Scholar
Miettinen HE, Rönö K, Koivusalo S, Stach-Lempinen B, Pöyhönen-Alho M, Eriksson JG, Hiltunen TP, Gylling H. Elevated serum squalene and cholesterol synthesis markers in pregnant obese women with gestational diabetes mellitus. J Lipid Res. 2014; 55(12):2644–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iizaka S, Nagata S, Sanada H. Nutritional status and habitual dietary intake are associated with frail skin conditions in community-dwelling older people. J Nutr Health Aging. 2017; 21(2):137–46.
Article
CAS
PubMed
Google Scholar
Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and function. Lipids. 2004; 39(4):293–309.
Article
CAS
PubMed
Google Scholar
Steffen BT, Bielinski SJ, Decker PA, Berardi C, Larson NB, Pankow JS, Michos ED, Hanson NQ, Herrington DM, Tsai MY. Low HDL cholesterol and particle concentrations are associated with greater levels of endothelial activation markers in multi-ethnic study of atherosclerosis participants. J Clin Lipidol. 2017; 11(4):995.
Article
Google Scholar
Shea MK, Kritchevsky SB, Hsu F-C, Nevitt M, Booth SL, Kwoh CK, McAlindon TE, Vermeer C, Drummen N, Harris TB, et al.The association between vitamin K status and knee osteoarthritis features in older adults: The health, aging and body composition study. Osteoarthr Cartil. 2015; 23(3):370–8.
Article
CAS
Google Scholar
Presse N, Belleville S, Gaudreau P, Greenwood CE, Kergoat M-J, Morais JA, Payette H, Shatenstein B, Ferland G. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging. 2013; 34(12):2777–83.
Article
CAS
PubMed
Google Scholar
Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007; 7:168–74.
Article
CAS
Google Scholar
Rosenfeldt FL, Pepe S, Linnane A, Nagley P, Rowland M, Ou R, Marasco S, Lyon W, Esmore D. Coenzyme Q10 protects the aging heart against stress. Ann N Y Acad Sci. 2002; 959(1):355–9.
Article
CAS
PubMed
Google Scholar
Navas P, Villalba JM, de Cabo R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion. 2007; 7:34–40.
Article
CAS
Google Scholar
Ochoa JJ, Quiles JL, Huertas JR, Mataix J. J Gerontol A Biol Sci Med Sci. 2005; 60(8):970–5.
Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G. Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets. 2010; 11(1):111–21.
Article
CAS
PubMed
Google Scholar
Luo M, Yang X, Hu J, Ruan X, Mu F, Fu Y. The synthesis of coenzyme Q10. Curr Org Chem. 2017; 21(6):489–502.
Article
CAS
Google Scholar
Paroha S, Chandel AKS, Dubey RD. Nanosystems for drug delivery of coenzyme Q10. Environ Chem Lett. 2017; 16(1):1–7.
Google Scholar
Atamna H, Liu J, Ames BN. Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts relevance to aging. J Biol Chem. 2001; 276(51):48410–6.
Article
CAS
PubMed
Google Scholar
Pabis K, ScheiberMojdehkar B, Valencak T, Nowikovsky K. Altered iron homeostasis in mouse models of aging. Exp Gerontol. 2017; 94:118.
Article
Google Scholar
Sung HY, Choi B-O, Jeong JH, Kong KA, Hwang J, Ahn J-H. Amyloid beta-mediated hypomethylation of heme oxygenase 1 correlates with cognitive impairment in alzheimer’s disease. PloS ONE. 2016; 11(4):0153156.
Google Scholar
Walther A, Philipp M, Lozza N, Ehlert U. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?. Oncotarget. 2016; 7(38):60844.
Article
PubMed
PubMed Central
Google Scholar
Knowlton A, Lee A. Estrogen and the cardiovascular system. Pharmacol Ther. 2012; 135(1):54–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017; 103:60–64.
Article
CAS
PubMed
Google Scholar
Luebberding S, Krueger N, Kerscher M. Age-related changes in male skin: quantitative evaluation of one hundred and fifty male subjects. Skin Pharmacol Physiol. 2014; 27(1):9–17.
Article
CAS
PubMed
Google Scholar
Sun C, Simon SI, Foster GA, Radecke CE, Hwang HV, Zhang X, Hammock BD, Chiamvimonvat N, Knowlton AA. 11, 12-epoxyecosatrienoic acids mitigate endothelial dysfunction associated with estrogen loss and aging: Role of membrane depolarization. J Mol Cell Cardiol. 2016; 94:180–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE, Jahoor F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011; 94(3):847–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Billard J-M. d-serine in the aging hippocampus. J Pharm Biomed Anal. 2015; 116:18–24.
Article
CAS
PubMed
Google Scholar
Mothet J, Rouaud E, Sinet P-M, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard J-M. A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell. 2006; 5(3):267–74.
Article
CAS
PubMed
Google Scholar
Le Couteur DG, Blyth FM, Creasey HM, Handelsman DJ, Naganathan V, Sambrook PN, Seibel MJ, Waite LM, Cumming RG. J Gerontol A Biomed Sci Med Sci. 2010; 65(7):712–7.
Cubizolle A, Guillou L, Mollereau B, Hamel CP, Brabet P. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PloS ONE. 2017; 12(7):0180148.
Article
CAS
Google Scholar
Tahir HJ, Rodrigo-Diaz E, Parry NR, Kelly JM, Carden D, Murray IJ. Slowed dark adaptation in older eyes; effect of location. Exp Eye Res. 2017; 155:47–53.
Article
CAS
PubMed
Google Scholar
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin c homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr. 2013; 33:45–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto M, Pickrell AM, Wang X, Bacman SR, Yu A, Hida A, Dillon LM, Morton PD, Malek TR, Williams SL, et al. Transient mitochondrial dna double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner. Cell Death Differ. 2017; 24(2):288–99.
Article
CAS
PubMed
Google Scholar
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachex Sarcopenia Muscle. 2017; 8(4):529–541.
Article
Google Scholar
Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013; 155(7):1624–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desler C, Lykke A, Rasmussen L. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism. J Nucleic Acids. 2010; 2010:1–9.
Article
CAS
Google Scholar
Desler C, Lillenes M, Tønjum T, Rasmussen L. The role of mitochondrial dysfunction in the progression of alzheimer’s disease. Curr Med Chem. 2017; 24:1–10.
Article
Google Scholar
Mitteldorf J. How does the body know how old it is? introducing the epigenetic clock hypothesis. Biochem (Mosc). 2013; 78(9):1048–53.
Article
CAS
Google Scholar
Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, Labat C, Bean K, Aviv A. Telomere length as an indicator of biological aging. Hypertension. 2001; 37(2):381–5.
Article
CAS
PubMed
Google Scholar
Schubert OT, Röst HL, Collins BC, Rosenberger G, Aebersold R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017; 12(7):1289–94.
Article
CAS
PubMed
Google Scholar
Di Meo A, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget. 2016; 7(32):52460.
Article
PubMed
Google Scholar