WHO. Global response to malaria at crossroads. Geneva: World Health Organization; 2017. http://www.who.int/news-room/detail/29-11-2017-global-response-to-malaria-at-crossroads. Accessed 11 June 2018.
Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med. 2015;373(21):2025–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moorthy VS, Good MF, Hill AV. Malaria vaccine developments. Lancet. 2004;363(9403):150–6.
Article
PubMed
Google Scholar
Moorthy VS, Ballou WR. Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data. Malar J. 2009;8:312.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davies DH, Duffy P, Bodmer JL, Felgner PL, Doolan DL. Large screen approaches to identify novel malaria vaccine candidates. Vaccine. 2015;33(52):7496–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh SP, Verma V, Mishra BN. Characterization of Plasmodium falciparum proteome at asexual blood stages for screening of effective vaccine candidates: an Immunoinformatics approach. Immunol Immunogenet Insights. 2015;7:21–30.
Article
Google Scholar
WHO. Malaria position paper.World Health organization; 2016. http://www.who.int/wer/2016/wer9104.pdf?ua=1. Accessed 11 June 2018.
Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, Kaslow DC. Malaria vaccine R&D in the decade of vaccines: breakthroughs, challenges and opportunities. Vaccine. 2013;31(Suppl 2):B233–43.
Article
PubMed
Google Scholar
Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl AcadSci U S A. 2014;111(34):12288–93.
Article
CAS
Google Scholar
Rappuoli R. Vaccines, emerging viruses, and how to avoid disaster. BMC Biol. 2014;12:100.
Article
PubMed
PubMed Central
Google Scholar
Centlivre M, Combadière B. New challenges in modern vaccinology. BMC Immunol. 2015;16:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh SP, Mishra BN. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Hum Immunol. 2016;77(3):295–306.
Article
CAS
PubMed
Google Scholar
Delany I, Rappuoli R, Seib KL. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harb Perspect Med. 2013;3(5):a012476.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rizwan M, Naz A, Ahmad J, Naz K, Obaid A, Parveen T, et al. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC Bioinformatics. 2017;18(1):106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goodswen SJ, Kennedy PJ, Ellis JT. A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. BMC Bioinformatics. 2013;14:315.
Article
PubMed
PubMed Central
Google Scholar
Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against helicobacter pylori: an in silico approach. Infect Genet Evol. 2017;49:309–17.
Article
CAS
PubMed
Google Scholar
Pichugin A, Zarling S, Perazzo L, Duffy PE, Ploegh HL, Krzych U. Identification of a novel CD8 T cell epitope derived from Plasmodium berghei protective liver-stage antigen. Front Immunol. 2018;9:91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh SP, Srivastava D, Mishra BN. Genome-wide identification of novel vaccine candidates for Plasmodium falciparum malaria using integrative bioinformatics approaches. 3 Biotech. 2017;7(5):318.
Article
PubMed
PubMed Central
Google Scholar
Kalyanaraman N. In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1. MolImmunol. 2018;93:193–205.
CAS
Google Scholar
Kahsay RY, Gao G, Liao L. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics. 2005;21(9):1853–8.
Article
CAS
PubMed
Google Scholar
Nielsen H. Predicting secretory proteins with SignalP. Methods Mol Biol. 2017;1611:59–73.
Article
CAS
PubMed
Google Scholar
Guy AJ, Irani V, Beeson JG, Webb B, Sali A, Richards JS, Ramsland PA. Proteome-wide mapping of immune features onto Plasmodium protein three-dimensional structures. Sci Rep. 2018;8(1):4355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swearingen KE, Lindner SE, Flannery EL, Vaughan AM, Morrison RD, Patrapuvich R, et al. Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites. PLoSNegl Trop Dis. 2017;11(7):e0005791.
Article
CAS
Google Scholar
Chen JH, Chen SB, Wang Y, Ju C, Zhang T, Xu B, et al. An immunomics approach for the analysis of natural antibody responses to Plasmodium vivax infection. MolBiosyst. 2015;11(8):2354–63.
CAS
Google Scholar
Anderson DC, Lapp SA, Barnwell JW, Galinski MR. A large scale Plasmodium vivax- Saimiriboliviensistrophozoite-schizont transition proteome. PLoS One. 2017;12(8):e0182561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ansari FA, Kumar N, BalaSubramanyam M, Gnanamani M, Ramachandran S. MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins. 2008;70(3):659–66.
Article
CAS
PubMed
Google Scholar
Delfani S, Imani Fooladi AA, Mobarez AM, Emaneini M, Amani J, Sedighian H. In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. ClinExp Vaccine Res. 2015;4(1):99–106.
Article
CAS
Google Scholar
Cravo P, Machado RB, Leite JA, Leda T, Suwanarusk R, Bittencourt N, et al. In silico epitope mapping and experimental evaluation of the Merozoite adhesive Erythrocytic binding protein (MAEBL) as a malaria vaccine candidate. Malar J. 2018;17(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mehla K, Ramana J. Surface proteome mining for identification of potential vaccine candidates against campylobacter jejuni: an in silico approach. Funct Integr Genomics. 2017;17(1):27–37.
Article
CAS
PubMed
Google Scholar
Jing L, Guo D, Hu W, Niu X. The prediction of a pathogenesis-related secretome of Pucciniahelianthi through high-throughput transcriptome analysis. BMC Bioinformatics. 2017;18(1):166.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lopez D, Ribeiro S, Label P, Fumanal B, Venisse JS, Kohler A, et al. Genome-wide analysis of Corynesporacassiicola leaf fall disease putative effectors. Front Microbiol. 2018;9:276.
Article
PubMed
PubMed Central
Google Scholar
Oany AR, Emran AA, Jyoti TP. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther. 2014;8:1139–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, et al. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol. 2018;58:96–109.
Article
PubMed
Google Scholar
Dikhit MR, Ansari MY, Vijaymahantesh K, Mansuri R, Sahoo BR, et al. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: a first step towards vaccine development. Infect Genet Evol. 2016;45:187–97.
Article
CAS
PubMed
Google Scholar
Singh SP, Khan F, Mishra BN. Computational characterization of Plasmodium falciparum proteomic data for screening of potential vaccine candidates. Hum Immunol. 2010;71(2):136–43.
Article
CAS
PubMed
Google Scholar
Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. 2017;8:278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhasin M, Raghava GP. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine. 2004;22(23–24):3195–204.
Article
CAS
PubMed
Google Scholar
Bhasin M, Raghava GP. Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci. 2004;13(3):596–07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct. 2013;8:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, et al. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep. 2017;7:42851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12(2):255–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;208(2):341–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Offeddu V, Rauch M, Silvie O, Matuschewski K. The Plasmodium protein P113 supports efficient sporozoite to liver stage conversion in vivo. Mol Biochem Parasitol. 2014;193(2):101–9.
Article
CAS
PubMed
Google Scholar
Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun. 2017;8:14333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40(3):343–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saxena AK, Wu Y, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. Eukaryot Cell. 2007;6(8):1260–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018;24(1):43–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhuri R, Ahmed S, Ansari FA, Singh HV, Ramachandran S. MalVac: database of malarial vaccine candidates. Malar J. 2008;7:184.
Article
PubMed
PubMed Central
Google Scholar
Singh SP, Mishra BN. Identification and characterization of merozoite surface protein 1 epitope. Bioinformation. 2009;4(1):1.
Article
PubMed
PubMed Central
Google Scholar
Ulrich A, Partridge JR, Schwartz TU. The stoichiometry of the nucleoporin 62 subcomplex of the nuclear pore in solution. MolBiol Cell. 2014;25(9):1484–92.
Google Scholar
Terheggen U, Drew DR, Hodder AN, Cross NJ, Mugyenyi CK, Barry AE, et al. Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Med. 2014;12:183.
Article
PubMed
PubMed Central
Google Scholar
Soulama I, Bigoga JD, Ndiaye M, Bougouma EC, Quagraine J, Casimiro PN, et al. Genetic diversity of polymorphic vaccine candidate antigens (apical membrane antigen-1, merozoite surface protein-3, and erythrocyte binding antigen-175) in Plasmodium falciparum isolates from western and Central Africa. Am J Trop Med Hyg. 2011;84(2):276–84.
Article
PubMed
PubMed Central
Google Scholar
Stone WJR, Campo JJ, Ouédraogo AL, Meerstein-Kessel L, Morlais I, Da D, et al. Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nat Commun. 2018;9(1):558.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sherrard-Smith E, Sala KA, Betancourt M, Upton LM, Angrisano F, Morin MJ, et al. Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density. Elife. 2018;7:e35213.
Article
PubMed
PubMed Central
Google Scholar
Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R, et al. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: implication for vaccine development. PLoS One. 2017;12(8):e0182674.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991;352(6336):595–600.
Article
CAS
PubMed
Google Scholar
Lyke KE, Fernández-Viňa MA, Cao K, Hollenbach J, Coulibaly D, Kone AK, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77(6):562–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osafo-Addo AD, Koram KA, Oduro AR, Wilson M, Hodgson A, Rogers WO. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am J Trop Med Hyg. 2008;78(2):251–5.
Article
PubMed
Google Scholar
Cao K, Moormann AM, Lyke KE, Masaberg C, Sumba OP, Doumbo OK, et al. Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. Tissue Antigens. 2004;63(4):293–325.
Article
CAS
PubMed
Google Scholar
Bertholet S, Goldszmid R, Morrot A, Debrabant A, Afrin F, Collazo-Custodio C, et al. Leishmania antigens are presented to CD8+T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J Immunol. 2006;177(6):3525–33.
Article
CAS
PubMed
Google Scholar
Oyarzun P, Ellis JJ, Gonzalez-Galarza FF, Jones AR, Middleton D, Boden M, et al. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine. 2015;33(10):1267–73.
Article
CAS
PubMed
Google Scholar
Oyarzún P, Kobe B. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Hum Vaccin Immunother. 2016;12(3):763–7.
Article
PubMed
Google Scholar
Damfo SA, Reche P, Gatherer D, Flower DR. In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines. J Mol Graph Model. 2017;78:195–205.
Article
CAS
PubMed
Google Scholar
Kaba SA, McCoy ME, Doll TA, Brando C, Guo Q, Dasgupta D, et al. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLoS One. 2012;7(10):e48304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burkhard P, Lanar DE. Malaria vaccine based on self-assembling protein nanoparticles. Expert Rev Vaccines. 2015;14(12):1525–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karch CP, TAPF D, Paulillo SM, Nebie I, Lanar DE, Corradin G, Burkhard P. The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria. J Nanobiotechnology. 2017;15(1):62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys. 2018;203:40–8.
Article
CAS
Google Scholar