Khorana HG, Buchi H, Ghosh H, Gupta N, Jacob TM, Kossel H, Morgan R, Narang SA, Ohtsuka E, Wells RD. Polynucleotide synthesis and the genetic code. Cold Spring Harb Symp Quant Biol. 1966; 31:39–49.
Article
CAS
PubMed
Google Scholar
Nirenberg M, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfield D, Levin J, Rottman F, Pestka S, Wilcox M, Anderson F. The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol. 1966; 31:11–24.
Article
CAS
PubMed
Google Scholar
Knight RD, Freeland SJ, Landweber LF. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci. 1999; 24(6):241–7.
Article
CAS
PubMed
Google Scholar
Di Giulio M. The origin of the genetic code: theories and their relationships, a review. Biosystems. 2005; 80(2):175–84.
Article
CAS
PubMed
Google Scholar
Sengupta S, Higgs PG. Pathways of genetic code evolution in ancient and modern organisms. J Mol Evol. 2015; 80(5–6):229–43.
Article
CAS
PubMed
Google Scholar
Koonin EV. Frozen accident pushing 50: Stereochemistry, expansion, and chance in the evolution of the genetic code. Life (Basel). 2017; 7(2):22.
Google Scholar
Kun Á, Radványi Á. The evolution of the genetic code: Impasses and challenges. Biosystems. 2017; 164:217–25.
Article
PubMed
CAS
Google Scholar
Koonin EV, Novozhilov AS. Origin and evolution of the universal genetic code. Annual Review of Genetics. 2017; 51:45–62.
Article
CAS
PubMed
Google Scholar
Ardell DH. On error minimization in a sequential origin of the standard genetic code. J Mol Evol. 1998; 47(1):1–13.
Article
CAS
PubMed
Google Scholar
Ardell DH, Sella G. On the evolution of redundancy in genetic codes. J Mol Evol. 2001; 53(4–5):269–81.
Article
CAS
PubMed
Google Scholar
BłaŻej P, Wnetrzak M, Mackiewicz P. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization. Biosystems. 2016; 150:61–72.
Article
PubMed
CAS
Google Scholar
Di Giulio M. The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol. 1989; 29(4):288–93.
Article
CAS
PubMed
Google Scholar
Di Giulio M, Medugno M. Physicochemical optimization in the genetic code origin as the number of codified amino acids increases. J Mol Evol. 1999; 49(1):1–10.
Article
CAS
PubMed
Google Scholar
Epstein CJ. Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature. 1966; 210(5031):25–8.
Article
CAS
PubMed
Google Scholar
Freeland SJ, Hurst LD. Load minimization of the genetic code: history does not explain the pattern. Proc R Soc B Biol Sci. 1998; 265(1410):2111–9.
Article
CAS
Google Scholar
Freeland SJ, Hurst LD. The genetic code is one in a million. J Mol Evol. 1998; 47(3):238–48.
Article
CAS
PubMed
Google Scholar
Freeland SJ, Wu T, Keulmann N. The case for an error minimizing standard genetic code. Orig Life Evol Biosph. 2003; 33(4–5):457–477.
Article
CAS
PubMed
Google Scholar
Freeland SJ, Knight RD, Landweber LF, Hurst LD. Early fixation of an optimal genetic code. Mol Biol Evol. 2000; 17(4):511–8.
Article
CAS
PubMed
Google Scholar
Gilis D, Massar S, Cerf NJ, Rooman M. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol. 2001; 2(11):0049.
Article
Google Scholar
Goldberg AL, Wittes RE. Genetic code: aspects of organization. Science. 1966; 153(3734):420–4.
Article
CAS
PubMed
Google Scholar
Goodarzi H, Najafabadi HS, Torabi N. Designing a neural network for the constraint optimization of the fitness functions devised based on the load minimization of the genetic code. Biosystems. 2005; 81(2):91–100.
Article
CAS
PubMed
Google Scholar
Haig D, Hurst LD. A quantitative measure of error minimization in the genetic-code. J Mol Evol. 1991; 33(5):412–7.
Article
CAS
PubMed
Google Scholar
Sella G, Ardell DH. The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J Mol Evol. 2006; 63(3):297–313.
Article
CAS
PubMed
Google Scholar
Woese CR. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965; 54(6):1546–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ardell DH, Sella G. No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos Trans R Soc B Biol Sci. 2002; 357(1427):1625–42.
Article
CAS
Google Scholar
Vetsigian K, Woese C, Goldenfeld N. Collective evolution and the genetic code. Proc Natl Acad Sci U S A. 2006; 103(28):10696–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guimarães RC, Moreira CHC, de Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci. 2008; 127(3):249–70.
Article
PubMed
CAS
Google Scholar
Higgs PG. A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol Direct. 2009; 4:16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weberndorfer G, Hofacker IL, Stadler PF. On the evolution of primitive genetic codes. Orig Life Evol Biosph. 2003; 33(4–5):491–514.
Article
CAS
PubMed
Google Scholar
Kun Á, Pongor S, Jordán F, Szathmáry E. Catalytic propensity of amino acids and the origins of the genetic code and proteins. Codes Life. 2008; 1:39–58. https://doi.org/10.1007/978-1-4020-6340-4_3.
Article
Google Scholar
Di Giulio M. The origin of the genetic code. Trends Biochem Sci. 1997; 22(2):49–50.
Article
CAS
PubMed
Google Scholar
Di Giulio M. The coevolution theory of the origin of the genetic code. J Mol Evol. 1999; 48(3):253–5.
Article
CAS
PubMed
Google Scholar
Di Giulio M. The coevolution theory of the origin of the genetic code. Phys Life Rev. 2004; 1(2):128–37.
Article
Google Scholar
Di Giulio M. An extension of the coevolution theory of the origin of the genetic code. Biol Direct. 2008; 3:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di Giulio M. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J Theor Biol. 2016; 399:134–40.
Article
CAS
PubMed
Google Scholar
Di Giulio M. Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory. J Theor Biol. 2017; 414:1–4.
Article
CAS
PubMed
Google Scholar
Guimarães RC. Metabolic basis for the self-referential genetic code. Orig Life Evol Biosph. 2011; 41(4):357–71.
Article
PubMed
CAS
Google Scholar
Wong JT. A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1975; 72(5):1909–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong JT, Ng SK, Mat WK, Hu T, Xue H. Coevolution theory of the genetic code at age forty: Pathway to translation and synthetic life. Life (Basel). 2016; 6(1):12.
Google Scholar
Wong JTF. Coevolution theory of the genetic code: A proven theory. Orig Life Evol Biosph. 2007; 37(4–5):403–8.
Article
CAS
PubMed
Google Scholar
Ribas de Pouplana L, Schimmel P.Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci. 2001; 26:591–6.
Article
CAS
PubMed
Google Scholar
Cavalcanti AR, Leite ES, Neto BB, Ferreira R. On the classes of aminoacyl-tRNA synthetases, amino acids and the genetic code. Orig Life Evol Biosph. 2004; 34(4):407–20.
Article
CAS
PubMed
Google Scholar
Cavalcanti AR, Neto BD, Ferreira R. On the classes of aminoacyl-trna synthetases and the error minimization in the genetic code. J Theor Biol. 2000; 204(1):15–20.
Article
CAS
PubMed
Google Scholar
Massey SE. A neutral origin for error minimization in the genetic code. J Mol Evol. 2008; 67(5):510–6.
Article
CAS
PubMed
Google Scholar
Massey SE. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life (Basel). 2015; 5(2):1301–32.
CAS
Google Scholar
Carter CW, et al. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed,. Biol Direct. 2014; 9:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Massey SE. The neutral emergence of error minimized genetic codes superior to the standard genetic code. J Theor Biol. 2016; 408:237–42.
Article
PubMed
Google Scholar
Di Giulio M. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory. J Theor Biol. 2017; 432:14–24.
Article
CAS
PubMed
Google Scholar
de Farias ST, Antonino D, Rêgo TG, José MV. Structural evolution of Glycyl-tRNA synthetases alpha subunit and its implication in the initial organization of the decoding system; 2018. pp. 1–8.
Novozhilov AS, Wolf YI, Koonin EV. Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct. 2007; 2:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koonin EV, Novozhilov AS. Origin and evolution of the genetic code: The universal enigma. Iubmb Life. 2009; 61(2):99–111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bose RC, Ray-Chaudhuri DK. On a class of error correcting binary group codes. Inf Control. 1960; 3:68–79.
Article
Google Scholar
Fimmel E, Strüngmann L. On the hierarchy of trinucleotide n-circular codes and their corresponding amino acids. J Theor Biol. 2015; 364:113–120.
Article
CAS
PubMed
Google Scholar
Gumbel M, Fimmel E, Danielli A, Strüngmann L. On models of the genetic code generated by binary dichotomic algorithms. Biosystems. 2015; 128:9–18.
Article
CAS
PubMed
Google Scholar
Fimmel E, Strüngmann L. Mathematical fundamentals for the noise immunity of the genetic code. Biosystems. 2018; 164:186–98.
Article
CAS
PubMed
Google Scholar
Monteagudo A, Santos J. Simulated evolution of the adaptability of the genetic code using genetic algorithms. Bio-Inspired Model Cogn Tasks Pt 1 Proc. 2007; 4527:478–87.
Google Scholar
Santos J, Monteagudo A. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinforma. 2011; 12:56.
Article
CAS
Google Scholar
Wnetrzak M, BłaŻej P, Mackiewicz D, Mackiewicz P. The optimality of the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC Evol Biol. 2018; 18:192.
Article
PubMed
PubMed Central
Google Scholar
Tlusty T. A colorful origin for the genetic code: Information theory, statistical mechanics and the emergence of molecular codes. Phys Life Rev. 2010; 7(3):362–76.
Article
PubMed
Google Scholar
BłaŻej P, Kowalski D, Mackiewicz D, Wnetrzak M, Aloqalaa D, Mackiewicz P. The structure of the genetic code as an optimal graph clustering problem. bioRxiv. 2018. https://doi.org/10.1101/332478. http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/05/28/332478.full.pdf.
Crick FH. Codon–anticodon pairing: the wobble hypothesis. J Mol Biol. 1966; 19(2):548–55.
Article
CAS
PubMed
Google Scholar
Murphy FVt, Ramakrishnan V. Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat Struct Mol Biol. 2004; 11(12):1251–2.
Article
CAS
PubMed
Google Scholar
Agmon I. The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci. 2009; 30:2921–34.
Article
CAS
Google Scholar
Belousoff MJ, Davidovich C, Bashan A, Yonath A. On the development towards the modern world: a plausible role of uncoded peptides in the RNA world. In: Origins of life and evolution of biospheres. vol 40. Berlin: Springer: 2010. p. 415–9.
Google Scholar
Knight RD, Freeland SJ, Landweber LF. Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet. 2001; 2:49–58.
Article
CAS
PubMed
Google Scholar
Yokobori S, Suzuki T, Watanabe K. Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol. 2001; 53(4–5):314–26.
Article
CAS
PubMed
Google Scholar
Sengupta S, Higgs PG. A unified model of codon reassignment in alternative genetic codes. Genetics. 2005; 170(2):831–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swire J, Judson OP, Burt A. Mitochondrial genetic codes evolve to match amino acid requirements of proteins. J Mol Evol. 2005; 60(1):128–39.
Article
CAS
PubMed
Google Scholar
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol. 2007; 64(6):662–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
BłaŻej P, Wnetrzak M, Mackiewicz P. The importance of changes observed in the alternative genetic codes; 2018. pp. 154–9.
Schultz DW, Yarus M. Transfer-RNA mutation and the malleability of the genetic code. J Mol Biol. 1994; 235(5):1377–80.
Article
CAS
PubMed
Google Scholar
Schultz DW, Yarus M. On malleability in the genetic code. J Mol Evol. 1996; 42(5):597–601.
Article
CAS
PubMed
Google Scholar
Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV. Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum,. Mol Biol Evol. 2016; 33:2885–9. https://doi.org/10.1093/molbev/msw166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swart EC, Serra V, Petroni G, Nowacki M. Genetic codes with no dedicated stop codon: Context-dependent translation termination. Cell. 2016; 166:691–702. https://doi.org/10.1016/j.cell.2016.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahonova K, Kostygov AY, Sevcikova T, Yurchenko V, Elias M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol. 2016; 26(17):2364–9.
Article
CAS
PubMed
Google Scholar
Lovett PS, Ambulos NP, Mulbry W, Noguchi N, Rogers EJ. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J Bacteriol. 1991; 173(5):1810–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsugi J, Murao K, Ishikura H. Effect of B. subtilis tRNA(Trp) on readthrough rate at an opal UGA codon. J Biochem. 1998; 123(5):853–8.
Article
CAS
PubMed
Google Scholar
Santos MAS, Ueda T, Watanabe K, Tuite MF. The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation?Mol Microbiol. 1997; 26(3):423–31.
Article
CAS
PubMed
Google Scholar
Mitchell M. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press; 1998.
Google Scholar
Sivanandam SN, Deepa SN. Introduction to Genetic Algorithms. Berlin, Heidelberg, New York: Springer; 2008.
Google Scholar
Rabiner L, Juang B. An introduction to hidden markov models. IEEE ASSP Mag. 1986; 3(1):4–16. https://doi.org/10.1109/MASSP.1986.1165342.
Article
Google Scholar
Santos MAS, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp,. Mol Microbiol. 1999; 31(3):937–47.
Article
CAS
PubMed
Google Scholar
Gomes AC, Miranda I, Silva RM, Moura GR, Thomas B, Akoulitchev A, Santos MA. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 2007; 8(10):R206. https://doi.org/10.1186/gb-2007-8-10-r206.
Article
PubMed
PubMed Central
CAS
Google Scholar
Massey SE. A sequential “2-1-3” model of genetic code evolution that explains codon constraints. J Mol Evol. 2006; 62(6):809–10.
Article
CAS
PubMed
Google Scholar
Ribas de Pouplana L, Santos M, Zhu J, Farabaugh P, Javid B. Protein mistranslation: friend or foe?. Trends Biochem Sci. 2014; 39:355–62.
Article
CAS
PubMed
Google Scholar
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol. 2017; 52(2):205–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
BłaŻej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. Optimization of the standard genetic code according to three codon positions using an evolutionary algorithm. PLoS ONE. 2018; 13(8):0201715.
Article
CAS
Google Scholar
Santos J, Monteagudo Á. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability. BMC Bioinforma. 2017; 18(1):195. https://doi.org/10.1186/s12859-017-1608-x.
Article
CAS
Google Scholar
BłaŻej P, Wnetrzak M, Mackiewicz D, Gagat P, Mackiewicz P. Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J Theor Biol. 2019; 464:21–32.
Article
PubMed
CAS
Google Scholar
Dudkiewicz A, Mackiewicz P, Nowicka A, Kowalczuk M, Mackiewicz D, Polak N, Smolarczyk K, Banaszak J, Dudek MR, Cebrat S. Correspondence between mutation and selection pressure and the genetic code degeneracy in the gene evolution. Futur Gener Comput Syst. 2005; 21(7):1033–9.
Article
Google Scholar
Mackiewicz P, Biecek P, Mackiewicz D, Kiraga J, Baczkowski K, Sobczynski M, Cebrat S. Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code. Comput Sci ICCS 2008 Pt 3 Ser Lect Notes Comput Sci. 2008; 5103:100–9.
Article
Google Scholar
BłaŻej P, Mackiewicz P, Cebrat S, Wanczyk M. Using evolutionary algorithms in finding of optimized nucleotide substitution matrices. In: Genetic and Evolutionary Computation Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013, Companion Material Proceedings: 2013. p. 41–2. https://doi.org/10.1145/2464576.2464598. https://doi.org/10.1145/2464576.2464598.
BłaŻej P, Mackiewicz D, Grabinska M, Wnetrzak M, Mackiewicz P. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Sci Rep. 2017; 7:1061. https://doi.org/10.1038/s41598-017-01130-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
BłaŻej P, Miasojedow B, Grabinska M, Mackiewicz P. Optimization of mutation pressure in relation to properties of protein-coding sequences in bacterial genomes. PLoS ONE. 2015; 10:0130411. https://doi.org/10.1371/journal.pone.0130411.
Article
CAS
Google Scholar