Mattick JS, Makunin IV. Small regulatory rnas in mammals. Hum Mol Genet. 2005; 14 Spec No 1:121–32.
Google Scholar
Santosh B, Varshney A, Yadava PK. Non-coding rnas: biological functions and applications. Cell Biochem Funct. 2015; 33(1):14–22.
CAS
PubMed
Google Scholar
Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281–97.
CAS
PubMed
Google Scholar
Esteller M. Non-coding rnas in human disease. Nat Rev Genet. 2011; 12(12):861–74.
CAS
PubMed
Google Scholar
Sanchez-Mejias A, Tay Y. Competing endogenous rna networks: tying the essential knots for cancer biology and therapeutics. J Hematol Oncol. 2015; 8:30.
PubMed
PubMed Central
Google Scholar
Le TD, Zhang J, Liu L, Li J. Computational methods for identifying mirna sponge interactions. Brief Bioinform. 2017; 18(4):577–90.
CAS
PubMed
Google Scholar
Le TD, Liu L, Zhang J, Liu B, Li J. From mirna regulation to mirna-tf co-regulation: computational approaches and challenges. Brief Bioinform. 2015; 16(3):475–96.
CAS
PubMed
Google Scholar
Zhang J, Le TD, Liu L, Li J. Identifying mirna sponge modules using biclustering and regulatory scores. BMC Bioinformatics. 2017; 18(3):44.
PubMed
PubMed Central
Google Scholar
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A. An extensive microrna-mediated network of rna-rna interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011; 147(2):370–81.
CAS
PubMed
PubMed Central
Google Scholar
Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding rnas and messenger rnas in human breast cancer. BMC Syst Biol. 2014; 8:83.
PubMed
PubMed Central
Google Scholar
Xu T, Le TD, Liu L, Su N, Wang R, Sun B, Colaprico A, Bontempi G, Li J. Cancersubtypes: an r/bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics. 2017; 33(19):3131–3.
CAS
PubMed
Google Scholar
Bertoli G, Cava C, Castiglioni I. Micrornas: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015; 5(10):1122–43.
CAS
PubMed
PubMed Central
Google Scholar
Xu T, Le TD, Liu L, Wang R, Sun B, Li J. Identifying cancer subtypes from mirna-tf-mrna regulatory networks and expression data. PLoS ONE. 2016; 11(4):0152792.
Google Scholar
Liu H, Brannon A, Reddy A, Alexe G, Seiler M, Arreola A, Oza J, Yao M, Juan D, Liou L, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010; 4(1):51.
PubMed
PubMed Central
Google Scholar
Muniategui A, Pey J, Planes FJ, Rubio A. Joint analysis of mirna and mrna expression data. Brief Bioinform. 2012; 14(3):263–78.
PubMed
Google Scholar
Tran DH, Satou K, Ho TB. Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics. 2008; 9 Suppl 12:5.
Google Scholar
Le TD, Liu L, Tsykin A, Goodall GJ, Liu B, Sun B-Y, Li J. Inferring microrna–mrna causal regulatory relationships from expression data. Bioinformatics. 2013; 29(6):765–71.
CAS
PubMed
Google Scholar
Zhang J, Le TD, Liu L, Liu B, He J, Goodall GJ, Li J. Inferring condition-specific mirna activity from matched mirna and mrna expression data. Bioinformatics. 2014; 30(21):3070–7.
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Le TD, Liu L, Liu B, He J, Goodall GJ, Li J. Identifying direct mirna–mrna causal regulatory relationships in heterogeneous data. J Biomed Inform. 2014; 52:438–47.
PubMed
Google Scholar
Le TD, Xu T, Liu L, Shu H, Hoang T, Li J. ParallelPC: An R Package for Efficient Causal Exploration in Genomic Data In: Ganji M, Rashidi L, Fung B, Wang C, editors. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science, vol 11154. Cham: Springer: 2018.
Google Scholar
Peters J, Buhlmann P, Meinshausen N. Causal inference by using invariant prediction: identification and confidence intervals. J R Stat Soc Ser B Stat Methodol. 2016; 78(5):947–1012.
Google Scholar
Liu MC, Pitcher BN, Mardis ER, Davies SR, Friedman PN, Snider JE, Vickery TL, Reed JP, DeSchryver K, Singh B, Gradishar WJ, Perez EA, Martino S, Citron ML, Norton L, Winer EP, Hudis CA, Carey LA, Bernard PS, Nielsen TO, Perou CM, Ellis MJ, Barry WT. Pam50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of c9741 (alliance). Npj Breast Cancer. 2016; 2:15023.
CAS
PubMed
PubMed Central
Google Scholar
Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009; 27(8):1160–7.
PubMed
PubMed Central
Google Scholar
The Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013; 45:1113.
Google Scholar
Le TD, Zhang J, Liu L, Truong BMT, Hu S, Xu T, Li J. Identifying microrna targets in epithelial-mesenchymal transition using joint-intervention causal inference. In: Proceedings of the 8th International Conference on Computational Systems-Biology and Bioinformatics. CSBio ’17. New York: ACM: 2017. p. 34–41. https://doi.org/10.1145/3156346.3156353.
Google Scholar
Le TD, Zhang J, Liu L, Liu H, Li J. mirlab: An r based dry lab for exploring mirna-mrna regulatory relationships. PLoS ONE. 2016; 10(12):0145386.
Google Scholar
Li Y. TargetScoreData: TargetScoreData. R package version 1.18.0. 2018.
Li Y, Goldenberg A, Wong K-C, Zhang Z. A probabilistic approach to explore human mirna targetome by integrating mirna-overexpression data and sequence information. Bioinformatics. 2014; 30(5):621–8.
CAS
PubMed
Google Scholar
Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H, Yang C-D, Hong H-C, Wei T-Y, Tu S-J, Tsai T-R, Ho S-Y, Jian T-Y, Wu H-Y, Chen P-R, Lin N-C, Huang H-T, Yang T-L, Pai C-Y, Tai C-S, Chen W-L, Huang C-Y, Liu C-C, Weng S-L, Liao K-W, Hsu W-L, Huang H-D. mirtarbase 2016: updates to the experimentally validated mirna-target interactions database. Nucleic Acids Res. 2016; 44(Database issue):239–47.
Google Scholar
Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos I-L, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG. Diana-tarbase v70: indexing more than half a million experimentally supported mirna:mrna interactions. Nucleic Acids Res. 2015; 43(D1):153–9.
Google Scholar
Dweep H, Gretz N. mirwalk2.0: a comprehensive atlas of microrna-target interactions. Nat Methods. 2015; 12:697.
CAS
PubMed
Google Scholar
Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P. Causal inference using graphical models with the r package pcalg. J Stat Softw. 2012; 047(i11):1–26.
Google Scholar
Pearson K. Notes on the history of correlation. Biometrika. 1920; 13(1):25–45.
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996; 58(1):267–88.
Google Scholar
Harris M, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, et al. The gene ontology (go) database and informatics resource. Nucleic Acids Res. 2004; 32(Database Issue):258–61.
Google Scholar
Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.
CAS
PubMed
PubMed Central
Google Scholar
Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011; 39(Database issue):691–7.
Google Scholar
Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E, Garcia-Garcia J, Sanz F, Furlong LI. Disgenet: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017; 45(D1):833–9.
Google Scholar
Oh M, Rhee S, Moon JH, Chae H, Lee S, Kang J, Kim S. Literature-based condition-specific mirna-mrna target prediction. PLoS ONE. 2017; 12(3):0174999.
Google Scholar
Feng C, Mao X, Shi H, Bo B, Chen X, Chen T, Zhu X, Li G. Detection of microrna: A point-of-care testing method based on a ph-responsive and highly efficient isothermal amplification. Anal Chem. 2017; 89(12):6631–6.
CAS
PubMed
Google Scholar
Clancy JL, Nousch M, Humphreys DT, Westman BJ, Beilharz TH, Preiss T. Methods to analyze microrna-mediated control of mrna translation. 2007; 431:83–111.