Kadadi A, Agrawal R, Nyamful C, Atiq R, editors. Challenges of data integration and interoperability in big data. 2014 IEEE International Conference on Big Data (Big Data); 2014 27–30 Oct. 2014.
Arp R, Smith B, Spear AD. Building ontologies with basic formal ontology: the MIT press; 2015. 248 p.
Book
Google Scholar
Zemmouchi-Ghomari L, Ghomari AR, editors. Reference Ontology. 2009 Fifth International Conference on Signal Image Technology and Internet Based Systems; 2009 Nov. 29 2009-Dec. 4 2009.
Brinkley JF, Suciu D, Detwiler LT, Gennari JH, Rosse C, Structural IG. A framework for using reference ontologies as a foundation for the semantic web. AMIA Ann Symp Proc. 2006;2006:96–100.
Google Scholar
Bard J, Rhee SY, Ashburner M. An ontology for cell types. Genome Biology. 2005;6(2):R21-R.
Article
PubMed
PubMed Central
Google Scholar
Diehl AD, Augustine AD, Blake JA, Cowell LG, Gold ES, Gondré-Lewis TA, et al. Hematopoietic cell types: prototype for a revised cell ontology. J Biomed Inform. 2011;44(1):75–9.
Article
PubMed
Google Scholar
Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS, et al. The cell ontology 2016: enhanced content, modularization, and ontology interoperability. Journal of Biomedical Semantics. 2016;7(1):44.
Article
PubMed
PubMed Central
Google Scholar
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25:1251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, et al. Relations in biomedical ontologies. Genome Biology. 2005;6(5):R46-R.
Article
PubMed
PubMed Central
Google Scholar
Masci AM, Arighi CN, Diehl AD, Lieberman AE, Mungall C, Scheuermann RH, et al. An improved ontological representation of dendritic cells as a paradigm for all cell types. BMC bioinformatics. 2009;10:70-.
Article
PubMed
PubMed Central
Google Scholar
Wu T-J, Schriml LM, Chen Q-R, Colbert M, Crichton DJ, Finney R, et al. Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis. Database: The Journal of Biological Databases and Curation. 2015;2015:bav032.
Article
PubMed
PubMed Central
Google Scholar
Butler WE, Atai N, Carter B, Hochberg F. Informatic system for a global tissue–fluid biorepository with a graph theory–oriented graphical user interface. Journal of Extracellular Vesicles. 2014;3:https://doi.org/10.3402/jev.v3.24247.
Article
Google Scholar
Boeker M, França F, Bronsert P, Schulz S. TNM-O: ontology support for staging of malignant tumours. Journal of Biomedical Semantics. 2016;7:64.
Article
PubMed
PubMed Central
Google Scholar
Gao M, Warner J, Yang P, Alterovitz G. On the Bayesian derivation of a treatment-based Cancer ontology. AMIA Summits on Translational Science Proceedings. 2014;2014:209–17.
PubMed Central
Google Scholar
Tagliaferri L, Kovács G, Autorino R, Budrukkar A, Guinot JL, Hildebrand G, et al. ENT COBRA (consortium for brachytherapy data analysis): interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy). Journal of Contemporary Brachytherapy. 2016;8(4):336–43.
Article
PubMed
PubMed Central
Google Scholar
Myneni S, Amith M, Geng Y, Tao C. Towards an ontology-driven framework to enable development of personalized mHealth solutions for Cancer survivors’ engagement in healthy living. Studies in health technology and informatics. 2015;216:113–7.
PubMed
PubMed Central
Google Scholar
Spasic I, Livsey J, Keane JA, Nenadic G. Text mining of cancer-related information: review of current status and future directions. Int J Med Inform. 2014;83(9):605–23.
Article
PubMed
Google Scholar
Shen Y, Colloc J, Jacquet-Andrieu A, Lei K. Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system. J Biomed Inform. 2015;56:307–17.
Article
PubMed
Google Scholar
Wang C, Zimmermann MT, Prodduturi N, Chute CG, Jiang G. Adverse drug event-based stratification of tumor mutations: a case study of breast Cancer patients receiving aromatase inhibitors. AMIA Ann Symp Proc. 2014;2014:1160–9.
Google Scholar
Regan K, Raje S, Saravanamuthu C, Payne PRO. Conceptual knowledge discovery in databases for drug combinations predictions in malignant melanoma. Studies in health technology and informatics. 2015;216:663–7.
PubMed
PubMed Central
Google Scholar
Fragoso G, de Coronado S, Haber M, Hartel F, Wright L. Overview and utilization of the NCI thesaurus. Comparative and Functional Genomics. 2005;5(8):648–54.
Article
Google Scholar
Ceusters W, Smith B, Goldberg L. A terminological and ontological analysis of the NCI thesaurus. Methods Inf Med. 2005;44(4):498–507.
Article
CAS
PubMed
Google Scholar
Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(4):655–74.
Article
PubMed
Google Scholar
Pockley AG, Foulds Gemma A, Oughton Julie A, Kerkvliet Nancy I, Multhoff G. Immune Cell Phenotyping Using Flow Cytometry. Current Protocols in Toxicology. 2015;66(1):18.8.1–.8.34.
Article
PubMed
Google Scholar
Dworzak Michael N, Buldini B, Gaipa G, Ratei R, Hrusak O, Luria D, et al. AIEOP-BFM consensus guidelines 2016 for flow cytometric Immunophenotyping of pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2017;94(1):82–93.
Article
PubMed
Google Scholar
Noy NF, Crubézy M, Fergerson RW, Knublauch H, Tu SW, Vendetti J, et al. Protégé-2000: An Open-Source Ontology-Development and Knowledge-Acquisition Environment: AMIA 2003 Open Source Expo. AMIA Annual Symposium Proceedings. 2003;2003:953-.
Natale DA, Arighi CN, Barker WC, Blake JA, Bult CJ, Caudy M, et al. The protein ontology: a structured representation of protein forms and complexes. Nucleic Acids Res. 2011;39(Database issue):D539–D45.
Article
CAS
PubMed
Google Scholar
Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36(Database issue):D344–D50.
CAS
PubMed
Google Scholar
Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, Mungall CJ, et al. Logical Development of the Cell Ontology. BMC bioinformatics. 2011;12:6-.
Sarntivijai S, Lin Y, Xiang Z, Meehan TF, Diehl AD, Vempati UD, et al. CLO: The cell line ontology. Journal of Biomedical Semantics. 2014;5:37-.
Article
PubMed
PubMed Central
Google Scholar
Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40(Database issue):D136–D43.
Article
CAS
PubMed
Google Scholar
Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 2012;13(1):R5.
Article
PubMed
PubMed Central
Google Scholar
The Gene Ontology C, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
Article
Google Scholar
Kazakov Y, Krötzsch M, Simancik F. ELK : a reasoner for OWL EL ontologies ( technical report ). Conference Proceedings. 2012.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016.
van Eys J, Pullen J, Head D, Boyett J, Crist W, Falletta J, et al. The French-American-British (FAB) classification of leukemia. The pediatric oncology group experience with lymphocytic leukemia. Cancer. 1986;57(5):1046–51.
Article
PubMed
Google Scholar
FG B. Classification of acute leukemias. . In: C-H P, editor. Treatment of acute leukemias. Totowa, NJ: Humana Press; 2003. p. p 43–58.
van Dongen JJM, Orfao A. EuroFlow: resetting leukemia and lymphoma immunophenotyping. Basis for companion diagnostics and personalized medicine. Leukemia. 2012;26(9):1899–907.
Article
PubMed
PubMed Central
Google Scholar
Bene M, Castoldi G, Knapp W, Ludwig W-D, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL)1995. 1783–6 p.
Kumar S, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23(3):433–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A, et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom. 2010;78(4):239–52.
PubMed
Google Scholar
Pojero F, Casuccio A, Parrino MF, Cardinale G, Colonna Romano G, Caruso C, et al. Old and new immunophenotypic markers in multiple myeloma for discrimination of responding and relapsing patients: the importance of "normal" residual plasma cell analysis. Cytometry B Clin Cytom. 2015;88(3):165–82.
Article
PubMed
Google Scholar
Raja KR, Kovarova L, Hajek R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol. 2010;149(3):334–51.
Article
CAS
PubMed
Google Scholar
Courtot M, Meskas J, Diehl AD, Droumeva R, Gottardo R, Jalali A, et al. flowCL: ontology-based cell population labelling in flow cytometry. Bioinformatics. 2015;31(8):1337–9.
Article
PubMed
Google Scholar
Qian Y, Wei C, Lee FE-H, Campbell J, Halliley J, Lee JA, et al. Elucidation of seventeen human peripheral blood B cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom. 2010;78(Suppl 1):S69–82.
Article
PubMed
PubMed Central
Google Scholar