Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642–56.
Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol. 2018;26(6):555–56.
WHO. WHO Global Tuberculosis Report 2018. 2018.
Google Scholar
Central TB Division. Annual Status report of Tb India 2016, Revised National TB Control Programme. J Chem Inf Model. 2013;53:1689–99.
Fogel N. Tuberculosis: a disease without boundaries. Tuberculosis. 2015;95(5):527–31.
Donald PR, Marais BJ, Barry CE. Age and the epidemiology and pathogenesis of tuberculosis. Lancet. 2010;375(9729):1852–54.
Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017;17(11):691–702.
Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulmonary Medicine. 2013;2013:828939. https://doi.org/10.1155/2013/828939.
Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med. 2009;68(12):2240–46.
Dheda K, Schwander SK, Zhu B, van RN Z-S, Zhang Y. The immunology of tuberculosis: from bench to bedside. Respirology. 2010;15:433–50. https://doi.org/10.1111/j.1440-1843.2010.01739.x.
Article
PubMed
PubMed Central
Google Scholar
O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.
Article
CAS
PubMed
Google Scholar
Cailleaux-Cezar M, De D, Xavier GM, CLG DS, FCQ DM, Ruffino-Netto A, et al. Tuberculosis incidence among contacts of active pulmonary tuberculosis. Int J Tuberc Lung Dis. 2009;13(2):190–95.
Lin PL, Flynn JL. Understanding Latent Tuberculosis: A Moving Target. J Immunol. 2010;185(1):15–22.
Tufariello JAM, Chan J, Flynn JAL. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis. 2003;3(9):578–90.
Rockwood N, du Bruyn E, Morris T, Wilkinson RJ. Assessment of treatment response in tuberculosis: Expert Review of Respiratory Medicine; 2016;10(6):643–54.
Sotgiu G, Centis R, D’Ambrosio L, Battista Migliori G. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5(5):a017822.
Diel R, Hitte Nl, Schaberg T. Cost effectiveness of treating multi-drug resistant tuberculosis by adding Deltyba™ to background regimens in Germany. Respiratory Medicine. 2015;109(5):632–41.
Kerantzas CA, Jacobs WR. Origins of combination therapy for tuberculosis: Lessons for future antimicrobial development and application. mBio. 2017;8(2):e01586–16.
Tiberi S, Scardigli A, Centis R, D’Ambrosio L, Muñoz-Torrico M, Salazar- Lezama MÁ, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 2017;56:181–84.
Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Migliori GB. New drugs and perspectives for new anti-tuberculosis regimens. Rev Port Pneumol (English Edition). 2018.
Nath H, Ryoo S. First– and second–line drugs and drug resistance. In: Tuberculosis - Current Issues in Diagnosis and Management; 2013.
Google Scholar
Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, et al. Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med. 2015;3(3):220–34.
Haas MK, Belknap RW. Updates in the treatment of active and latent tuberculosis. Semin Respir Crit Care Med. 2018;39:297–309.
Article
Google Scholar
Getahun H, Matteelli A, Abubakar I, Abdel Aziz M, Baddeley A, Barreira D, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46(6):1563–76.
Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous 607granuloma: An unsuccessful host defence mechanism providing a safety 608shelter for the bacteria? Clin Dev Immunol. 2012;2012(2012):139127.
Oxlade O, Schwartzman K, Behr MA, Benedetti A, Pai M, Heymann J, et al. Global tuberculosis trends: a reflection of changes in tuberculosis control or in population health? Int J Tuberc Lung Dis. 2009;13(10):1238–46.
Schrager LK, Harris RC, Vekemans J. Research and development of new tuberculosis vaccines: a review. F1000Research. 2019;7:1732.
Prabowo SA, Painter H, Zelmer A, Smith SG, Seifert K, Amat M, et al. RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Front Immunol. 2019;10:1–10.
Article
Google Scholar
Nell AS, D’lom E, Bouic P, Sabaté M, Bosser R, Picas J, et al. Safety, tolerability, and immunogenicity of the novel Antituberculous vaccine RUTI: randomized. Placebo-Controlled Phase II Clinical Trial in Patients with Latent Tuberculosis Infection PLoS One. 2014;9:e89612. https://doi.org/10.1371/journal.pone.0089612.
Article
CAS
PubMed
Google Scholar
Vilaplana C, Montané E, Pinto S, Barriocanal AM, Domenech G, Torres F, et al. Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI®. Vaccine. 2010;28:1106–16. https://doi.org/10.1016/j.vaccine.2009.09.134.
Article
CAS
PubMed
Google Scholar
Javaid A, Ahmad N, Afridi AK, Basit A, Khan AH, Ahmad I, et al. Validity of time to sputum culture conversion to predict cure in patients with multidrug-resistant tuberculosis: a retrospective single-center study. Am J Trop Med Hyg. 2018;98(6):1629–36.
Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico clinical trials: concepts and early adoptions. Brief Bioinform. 2018:1–10. https://doi.org/10.1093/bib/bby043.
Carlier A, Vasilevich A, Marechal M, De Boer J, Geris L. In silico clinical trials for pediatric orphan diseases. Sci Rep. 2018;6;8(1):2465.
Viceconti M, Henney A, Morley-Fletcher E. In silico clinical trials: how computer simulation will transform the biomedical industry. Int J Clin Trials. 2016;3:37. https://doi.org/10.18203/2349-3259.ijct20161408.
Article
Google Scholar
Pappalardo F, Russo G, Pennisi M, Sgroi G, Alessandro G, Palumbo P, et al. Agent based modeling of relapsing multiple sclerosis: A possible approach to predict treatment outcome. In: Proceedings - 2018 IEEE international conference on bioinformatics and biomedicine, BIBM 2018; 2019.
Google Scholar
Pappalardo F, Forero IM, Pennisi M, Palazon A, Melero I, Motta S. SimB16: modeling induced immune system response against B16-melanoma. PLoS One. 2011;6:e26523. https://doi.org/10.1371/journal.pone.0026523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennisi M, Russo G, Ravalli S, Pappalardo F. Combining agent based-models and virtual screening techniques to predict the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinformatics. 2017;18:544. https://doi.org/10.1186/s12859-017-1961-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palladini A, Nicoletti G, Pappalardo F, Murgo A, Grosso V, Stivani V, et al. In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer Res. 2010;70:7755–63. https://doi.org/10.1158/0008-5472.CAN-10-0701.
Article
CAS
PubMed
Google Scholar
Gullo F, van der Garde M, Russo G, Pennisi M, Motta S, Pappalardo F, et al. Computational modeling of the expansion of human cord blood CD133 + hematopoietic stem/progenitor cells with different cytokine combinations. Bioinformatics. 2015;31:2514–22. https://doi.org/10.1093/bioinformatics/btv172.
Article
CAS
PubMed
Google Scholar
Pennisi M, Russo G, Motta S, Pappalardo F. Agent based modeling of the effects of potential treatments over the blood–brain barrier in multiple sclerosis. J Immunol Methods. 2015;427:6–12. https://doi.org/10.1016/j.jim.2015.08.014.
Article
CAS
PubMed
Google Scholar
Pennisi M, Rajput A-M, Toldo L, Pappalardo F. Agent based modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis. BMC Bioinformatics. 2013;14(Suppl 16):S9. https://doi.org/10.1186/1471-2105-14-S16-S9.
Article
PubMed
PubMed Central
Google Scholar
Pappalardo F, Motta S, Lollini PL, Mastriani E. Analysis of vaccine’s schedules using models. Cell Immunol. 2006;244(2):137–40.
Pappalardo F, Russo G, Pennisi M, Sgroi G, Alessandro G, Palumbo P, et al. An agent based modeling approach for the analysis of tuberculosis - Immune system dynamics. In: Proceedings - 2018 IEEE international conference on bioinformatics and biomedicine, BIBM 2018; 2019.
Google Scholar
Castiglione F, Duca K, Jarrah A, Laubenbacher R, Hochberg D, Thorley-Lawson D. Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics. 2007;23(11):1371–77
Hafsi S, Candido S, Maestro R, L F, Soua Z, Bonavida B, et al. correlation between the overexpression of yin Yang 1 and the expression levels of miRNAs in Burkitt’s lymphoma: a computational study. Oncol Lett. 2016;11:1021–5. https://doi.org/10.3892/ol.2015.4031.
Article
CAS
PubMed
Google Scholar
Polo A, Crispo A, Cerino P, Falzone L, Candido S, Giudice A, et al. Environment and bladder cancer: molecular analysis by interaction networks. Oncotarget. 2017;8:65240–52. https://doi.org/10.18632/oncotarget.18222.
An G, Fitzpatrick BG, Christley S, Federico P, Kanarek A, Neilan RM, et al. Optimization and control of agent-based models in biology: a perspective. Bull Math Biol. 2017;79(1):63–87.
Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–76.
Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. In: Mobile DNA III. 2015.
Google Scholar
Hall EJ. The bystander effect. In: Health Physics. 2003.
Google Scholar