Consortium GP. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.
Article
CAS
Google Scholar
Capriotti E, Nehrt NL, Kann MG, Bromberg Y. Bioinformatics for personal genome interpretation. Brief Bioinform. 2012;13(4):495–512.
Article
PubMed
PubMed Central
Google Scholar
Hou JP, Ma J. DawnRank: discovering personalized driver genes in cancer. Genome Med. 2014. https://doi.org/10.1186/s13073-014-0056-8.
Article
PubMed
PubMed Central
Google Scholar
Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, Bernabé RR, et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.
Article
PubMed
CAS
Google Scholar
Zhang J, Zhang S, Wang Y, Zhang XS. Identification of mutated core cancer modules by intergrating somatic mutation, copy number variation, and gene expression data. BMC Syst Biol. 2013;7(Suppl 2):S4.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Wang RS, Zhang XS. Biomolecular networks: methods and applications in systems biology. Hoboken: Wiley; 2009.
Book
Google Scholar
Lee JH, Zhao XM, Yoon L, Lee JY, Kwon NH, Wang YY, et al. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov. 2016;2:16025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2016;35:1475.
Article
PubMed
CAS
Google Scholar
Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene. 2011;2016:35.
Google Scholar
Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, et al. Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia. 2017;31:555.
Article
PubMed
CAS
Google Scholar
Zhu G, Yang H, Chen X, Wu J, Zhang Y, Zhao XM. CSTEA: a webserver for the cell state transition expression atlas. Nucleic Acids Res. 2017;45(W1):W103–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Green ED, Guyer MS. National human genome research I: charting a course for genomic medicine from base pairs to bedside. Nature. 2011;470:204–13.
Article
PubMed
CAS
Google Scholar
Stratton MR. Journeys into the genome of cancer cells. EMBO Mol Med. 2013;5:169–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang YY, Chen WH, Xiao PP, Xie WB, Luo QB, Bork P, et al. GEAR: a database of genomic elements associated with drug resistance. Sci Rep. 2017;7:44085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vogelstein B, Papandopoulos N, Velculescu VE, Zhou S, Diaz LAJ, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al. MuSic: identifying mutational significance in cancer genomes. Genome Res. 2012;22:1589–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tamborero D, Gonzalezperez A, Lopezbigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29(18):2238–44.
Article
PubMed
CAS
Google Scholar
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.
Article
PubMed
CAS
Google Scholar
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res. 2009;69:6660–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, et al. CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics. 2013;29(5):647–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, Karchin R. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics. 2011;27(15):2147–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genom. 2013;14(3):1–16.
Google Scholar
Mao Y, Chen H, Liang H, Meric-Bernstam F, Mills GB, Chen K. CanDrA: cancer-specific driver missense mutation annotation with optimized features. PLoS ONE. 2013;8:e77945.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shihab HA, Gough J, Cooper DN, Day INN, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29(12):1504–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34(1):57–65.
Article
PubMed
CAS
Google Scholar
Han Y, Yang JZ, Qian XY, Cheng WC, Liu SH, Hua X, et al. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Res. 2019;47(8):e45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet. 2016;17(10):615–29.
Article
PubMed
CAS
Google Scholar
Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 2012;22:398–406.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ng S, Collisson EA, Sokolov A, Goldstein T, Gonzalez-Perez A, Lopez-Bigas N, et al. PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis. Bioinformatics. 2012;28:i640–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leiserson MDM, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL, et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2014;47:106–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bashashati A, Haffari G, Ding JR, Ha G, Lui K, Rosner J, et al. DriverNet: uncovering the impact of somatic drive mutations on transcriptional network in cancer. Genome Biol. 2012;13:R124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BKH, Sia YY, et al. Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 2015;43(7):e44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jia P, Zhao Z. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data. PLOS Comput Biol. 2014;10(2):e1003460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amgalan B, Lee H. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method. Bioinformatics. 2015;31(15):2452–60.
Article
PubMed
CAS
Google Scholar
Ara C, Jung ES, Eriu K, Fran S, Ben L, Insuk L. MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Genome Biol. 2016;17:129.
Article
CAS
Google Scholar
Liu XP, Wang YT, Ji HB, Aihara K, Chen LN. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 2016;44(22):e164.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shrestha R, Hodzic E, Sauerwald T, Dao P, Wang K, Yeung J, et al. HIT’nDRIVE: patient-specific multidriver gene prioritization for precision oncology. Genome Res. 2017;27(9):1573–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo WF, Zhang SW, Liu LL, Liu F, Shi QQ, Zhang L, et al. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics. 2018;34(11):1893–903.
Article
PubMed
CAS
Google Scholar
Guo WF, Zhang SW, Zeng T, Li Y, Gao J, Chen L. A novel network control model for identifying personalized driver genes in cancer. PLOS Comput Biol. 2019;15(11):e1007520.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dinstag G, Shamir R. PRODIGY: personalized prioritization of driver genes. Bioinformatics. 2019;36(6):1831–9.
PubMed Central
Google Scholar
Qin GM, Li RY, Zhao XM. Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans Comput Biol Bioinform. 2016;13(6):1027–35.
Article
PubMed
Google Scholar
Zhao XM, Liu KQ, Zhu GH, He F, Duval B, Richer JM, et al. Identifying cancer-related microRNAs based on gene expression data. Bioinformatics. 2015;37(8):1226–34.
Article
Google Scholar
Prahallad A, Sun C, Huang S, Di NF, Salazar R, Zecchin D, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.
Article
PubMed
CAS
Google Scholar
Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database–2009 update. Nucleic Acids Res. 2009;37(suppl 1):D767–72.
Article
CAS
Google Scholar
Wei PJ, Zhang D, Xia JF, Zheng CH. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network. BMC Bioinform. 2016;17(17):467.
Article
CAS
Google Scholar
Futreal P, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.
PubMed
CAS
Google Scholar
Saito YD, Jensen AR, Salgia R, Posadas EM. Fyn a novel molecular target in cancer. Cancer. 2010;116(7):1629–37.
Article
PubMed
CAS
Google Scholar
Cohen JN, Joseph NM, North JP, Onodera C, Zembowicz A, LeBoit PE. Genomic analysis of pigmented epithelioid melanocytomas reveals recurrent alterations in PRKAR1A, and PRKCA genes. Am J Surg Pathol. 2017;14(10):1333–46.
Article
Google Scholar
Lee D, Do IG, Choi K, Sung CO, Jang KT, Choi D, et al. The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol Off J US Can Acad Pathol. 2012;25(1):131–9.
CAS
Google Scholar
Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, et al. DGIdb: mining the druggable genome. Nat Methods. 2013;10(12):1209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20(6):682–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen DB, Lu LY, Shang MS, Zhang YC, Zhou T. Identifying influential nodes in complex networks. Physica A. 2012;391(4):1777–87.
Article
Google Scholar
Hou Y, Gao B, Li G, Su Z. MaxMIF: a new method for identifying cancer driver genes through effective data integration. Comput Biol. 2018;5:1800640.
Google Scholar
Cheng FX, Liu C, Lin CC, Jia PL, Li WH, Zhao ZM. A gene gravity model for the evolution of cancer genomes: a study of 3000 cancer genomes across 9 cancer types. PLos Comput Biol. 2015;11:e1004497.
Article
PubMed
PubMed Central
CAS
Google Scholar