Molenaar D, van Berlo R, de Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol. 2009. https://doi.org/10.1038/msb.2009.82.
Article
PubMed
PubMed Central
Google Scholar
Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science. 2010;330:1099–102. https://doi.org/10.1126/science.1192588.
Article
CAS
PubMed
Google Scholar
You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature. 2013;500:301–6. https://doi.org/10.1038/nature12446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature. 2015;528:99–104. https://doi.org/10.1038/nature15765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol. 2015. https://doi.org/10.15252/msb.20145697.
Article
PubMed
PubMed Central
Google Scholar
Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature. 2017;551:119. https://doi.org/10.1038/nature24299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goelzer A, Fromion V. Resource allocation in living organisms. Biochem Soc Trans. 2017;45:945–52.
Article
CAS
Google Scholar
Yang L, Yurkovich JT, King ZA, Palsson BO. Modeling the multi-scale mechanisms of macromolecular resource allocation. Curr Opin Microbiol. 2018;45:8–15. https://doi.org/10.1016/j.mib.2018.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basan M. Resource allocation and metabolism: the search for governing principles. Curr Opin Microbiol. 2018;45:77–83. https://doi.org/10.1016/j.mib.2018.02.008.
Article
PubMed
Google Scholar
de Groot DH, Lischke J, Muolo R, Planqué R, Bruggeman FJ, Teusink B. The common message of constraint-based optimization approaches: overflow metabolism is caused by two growth-limiting constraints. Cell Mol Life Sci. 2019. https://doi.org/10.1007/s00018-019-03380-2.
Article
PubMed
PubMed Central
Google Scholar
Pramanik J, Keasling JD. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol Bioeng. 1998;60:230–8. https://doi.org/10.1002/(SICI)1097-0290(19981020)60:2%3c230::AID-BIT10%3e3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, van Gulik WM. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng. 2010;107:369–81. https://doi.org/10.1002/bit.22802.
Article
CAS
PubMed
Google Scholar
Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell. Sunderland: Sinauer Associates; 1990.
Google Scholar
Goelzer A, Fromion V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim Biophys Acta Gen Subj. 2011;1810:978–88.
Article
CAS
Google Scholar
Dourado H, Lercher MJ. An analytical theory of balanced cellular growth. Nat Commun. 2020;11:1226. https://doi.org/10.1038/s41467-020-14751-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Groot DH, Hulshof J, Teusink B, Bruggeman FJ, Planqué R. Elementary growth modes provide a molecular description of cellular self-fabrication. PLoS Comput Biol. 2020;16:e1007559. https://doi.org/10.1371/journal.pcbi.1007559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gosset G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact. 2005;4:14. https://doi.org/10.1186/1475-2859-4-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.
PubMed
PubMed Central
Google Scholar
Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv. 2019;37:284–305. https://doi.org/10.1016/j.biotechadv.2018.12.007.
Article
CAS
PubMed
Google Scholar
Portnoy VA, Bezdan D, Zengler K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol. 2011;22:590–4. https://doi.org/10.1016/j.copbio.2011.03.007.
Article
CAS
PubMed
Google Scholar
Towbin BD, Korem Y, Bren A, Doron S, Sorek R, Alon U. Optimality and sub-optimality in a bacterial growth law. Nat Commun. 2017;8:14123. https://doi.org/10.1038/ncomms14123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A, Heinemann M. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol. 2016;12:882. https://doi.org/10.15252/msb.20166998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JH, Bening SC, Collins JJ. Antibiotic efficacy—context matters. Curr Opin Microbiol. 2017;39:73–80. https://doi.org/10.1016/j.mib.2017.09.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, et al. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol. 2016;34:104. https://doi.org/10.1038/nbt.3418.
Article
CAS
PubMed
Google Scholar
O’Brien EJ, Utrilla J, Palsson BO. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput Biol. 2016;12:e1004998. https://doi.org/10.1371/journal.pcbi.1004998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li SH-J, Li Z, Park JO, King CG, Rabinowitz JD, Wingreen NS, et al. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol. 2018;3:939–47. https://doi.org/10.1038/s41564-018-0199-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori M, Schink S, Erickson DW, Gerland U, Hwa T. Quantifying the benefit of a proteome reserve in fluctuating environments. Nat Commun. 2017;8:1225. https://doi.org/10.1038/s41467-017-01242-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korem Kohanim Y, Levi D, Jona G, Towbin BD, Bren A, Alon U. A bacterial growth law out of steady state. Cell Rep. 2018;23:2891–900. https://doi.org/10.1016/j.celrep.2018.05.007.
Article
CAS
PubMed
Google Scholar
New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, et al. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 2014;12:e1001764. https://doi.org/10.1371/journal.pbio.1001764.
Article
PubMed
PubMed Central
Google Scholar
Bremer H, Dennis P. Escherichia coli and Salmonella. Washington, DC: ASM Press; 1996.
Google Scholar
Maaløe O. Biological regulation and development. New York: Plenum; 1979.
Google Scholar
Venturelli OS, Tei M, Bauer S, Chan LJG, Petzold CJ, Arkin AP. Programming mRNA decay to modulate synthetic circuit resource allocation. Nat Commun. 2017;8:15128. https://doi.org/10.1038/ncomms15128.
Article
PubMed
PubMed Central
Google Scholar
Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol. 2014;10:742. https://doi.org/10.15252/msb.20145299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Vazquez A, Wise A, Warita T, Warita K, Bar-Joseph Z, et al. Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells. BMC Syst Biol. 2013;7:138. https://doi.org/10.1186/1752-0509-7-138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szenk M, Dill KA, de Graff AMR. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 2017;5:95–104. https://doi.org/10.1016/j.cels.2017.06.005.
Article
CAS
PubMed
Google Scholar
Agapakis CM, Boyle PM, Silver PA. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol. 2012;8:527–35. https://doi.org/10.1038/nchembio.975.
Article
CAS
PubMed
Google Scholar
Wang X, Xia K, Yang X, Tang C. Growth strategy of microbes on mixed carbon sources. Nat Commun. 2019;10:1279. https://doi.org/10.1038/s41467-019-09261-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24. https://doi.org/10.1038/nrmicro1932.
Article
CAS
PubMed
Google Scholar
De Deken RH. The crabtree effect: a regulatory system in yeast. Microbiology. 1966;44:149–56. https://doi.org/10.1099/00221287-44-2-149.
Article
Google Scholar
Yu R, Nielsen J. Big data in yeast systems biology. FEMS Yeast Res. 2019. https://doi.org/10.1093/femsyr/foz070.
Article
PubMed
Google Scholar
Chen Y, Nielsen J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc Natl Acad Sci. 2019;116:17592–7. https://doi.org/10.1073/pnas.1906569116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol. 2011;7:e1002018. https://doi.org/10.1371/journal.pcbi.1002018.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Alteriis E, Cartenì F, Parascandola P, Serpa J, Mazzoleni S. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death. Cell Cycle. 2018;17:688–701. https://doi.org/10.1080/15384101.2018.1442622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, Barabasi AL, et al. Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst Biol. 2008. https://doi.org/10.1186/1752-0509-2-7.
Article
PubMed
PubMed Central
Google Scholar
Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabasi AL, et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci USA. 2007. https://doi.org/10.1073/pnas.0609845104.
Article
PubMed
PubMed Central
Google Scholar
Zhuang K, Vemuri GN, Mahadevan R. Economics of membrane occupancy and respiro-fermentation. Mol Syst Biol. 2011. https://doi.org/10.1038/msb.2011.34.
Article
PubMed
PubMed Central
Google Scholar
Vazquez A, Oltvai ZN. Macromolecular crowding explains overflow metabolism in cells. Sci Rep. 2016;6:31007. https://doi.org/10.1038/srep31007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woldringh CL, Binnerts JS, Mans A. Variation in Escherichia coli buoyant density measured in Percoll gradients. J Bacteriol. 1981;148:58–63.
Article
CAS
Google Scholar
Basan M, Zhu M, Dai X, Warren M, Sévin D, Wang Y-P, et al. Inflating bacterial cells by increased protein synthesis. Mol Syst Biol. 2015;11:836. https://doi.org/10.15252/msb.20156178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goelzer A, Fromion V, Scorletti G. Cell design in bacteria as a convex optimization problem. Automatica. 2011;47:1210–8.
Article
Google Scholar
Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R, et al. Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng. 2015;32:232–43. https://doi.org/10.1016/j.ymben.2015.10.003.
Article
CAS
PubMed
Google Scholar
Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLoS ONE. 2012;7:e45635. https://doi.org/10.1371/journal.pone.0045635.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2013;9:693–693. https://doi.org/10.1038/msb.2013.52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maitra A, Dill KA. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc Natl Acad Sci. 2015;112:406–11.
Article
CAS
Google Scholar
Chen T, He HL, Church GM. Modeling gene expression with differential equations. In: Proceedings of pacific symposium on biocomputing (PSB’99). Singapore: World Scientific; 1998. p. 29–40. https://doi.org/10.1142/9789814447300_0004.
Tchourine K, Poultney CS, Wang L, Silva GM, Manohar S, Mueller CL, et al. One third of dynamic protein expression profiles can be predicted by a simple rate equation. Mol BioSyst. 2014;10:2850–62. https://doi.org/10.1039/C4MB00358F.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurizi MR. Proteases and protein degradation in Escherichia coli. Experientia. 1992;48:178–201. https://doi.org/10.1007/BF01923511.
Article
CAS
PubMed
Google Scholar
Dressaire C, Gitton C, Loubière P, Monnet V, Queinnec I, Cocaign-Bousquet M. Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis. PLOS Comput Biol. 2009;5:1–12. https://doi.org/10.1371/journal.pcbi.1000606.
Article
CAS
Google Scholar
Nóbel F, Picó J. Resources allocation explains the differential roles of RBS and promoter strengths in cell mass distribution and optimal protein expression productivity. bioRxiv. 2020. https://doi.org/10.1101/2020.11.19.390583.
Article
Google Scholar
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28:245–8. https://doi.org/10.1038/nbt.1614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori M, Hwa T, Martin OC, De Martino A, Marinari E. Constrained allocation flux balance analysis. PLoS Comput Biol. 2016;12:e1004913.
Article
Google Scholar
Zeng H, Yang A. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways. BMC Syst Biol. 2019;13:1–18.
Article
Google Scholar
Zeng H, Yang A. Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli. Biotechnol Bioeng. 2019;116:1484–95.
Article
CAS
Google Scholar
Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification—new options and contents in BRENDA. Nucleic Acids Res. 2012;41:D764–72. https://doi.org/10.1093/nar/gks1049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez BJ, Zhang C, Nilsson A, Lahtvee P-J, Kerkhoven EJ, Nielsen J. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol. 2017;13:935.
Article
Google Scholar
Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150:389–401. https://doi.org/10.1016/j.cell.2012.05.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Tan J, O’Brien EJ, Monk JM, Kim D, Li HJ, et al. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci. 2015;112:10810–5. https://doi.org/10.1073/pnas.1501384112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathog. 2016;12:e1005939. https://doi.org/10.1371/journal.ppat.1005939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waldherr S, Oyarzún DA, Bockmayr A. Dynamic optimization of metabolic networks coupled with gene expression. J Theor Biol. 2015;365:469–85. https://doi.org/10.1016/j.jtbi.2014.10.035.
Article
PubMed
Google Scholar
Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002;83:1331–40. https://doi.org/10.1016/S0006-3495(02)73903-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000. https://doi.org/10.1038/73786.
Article
PubMed
Google Scholar
Carlson RP. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics. 2007. https://doi.org/10.1093/bioinformatics/btm082.
Article
PubMed
PubMed Central
Google Scholar
Wortel MT, Noor E, Ferris M, Bruggeman FJ, Liebermeister W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput Biol. 2018;14:1–21. https://doi.org/10.1371/journal.pcbi.1006010.
Article
CAS
Google Scholar
de Groot DH, van Boxtel C, Planqué R, Bruggeman FJ, Teusink B. The number of active metabolic pathways is bounded by the number of cellular constraints at maximal metabolic rates. PLoS Comput Biol. 2019;15: e1006858. https://doi.org/10.1371/journal.pcbi.1006858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun. 2012;3:929.
Article
Google Scholar
Eames M, Kortemme T. Cost-benefit tradeoffs in engineered lac operons. Science (80- ). 2012;336:911–5. https://doi.org/10.1126/science.1219083.
Article
CAS
Google Scholar
Mori M, Marinari E, De Martino A. A yield-cost tradeoff governs Escherichia coli’s decision between fermentation and respiration in carbon-limited growth. npj Syst Biol Appl. 2019;5:16. https://doi.org/10.1038/s41540-019-0093-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng C, O’Brien EJ, McCloskey D, Utrilla J, Olson C, LaCroix RA, et al. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput Biol. 2019;15:e1007066. https://doi.org/10.1371/journal.pcbi.1007066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimers A-M, Knoop H, Bockmayr A, Steuer R. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc Natl Acad Sci. 2017;114:E6457–65. https://doi.org/10.1073/pnas.1617508114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun. 2019;10:3354. https://doi.org/10.1038/s41467-019-11331-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orth JD, Palsson BØ, Fleming RMT. Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus. 2010. https://doi.org/10.1128/ecosalplus.10.2.1.
Article
PubMed
Google Scholar
Sawers G, Watson G. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol. 1998;29:945–54. https://doi.org/10.1046/j.1365-2958.1998.00941.x.
Article
CAS
PubMed
Google Scholar
King ZA, O’Brien EJ, Feist AM, Palsson BO. Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metab Eng. 2017;39:220–7. https://doi.org/10.1016/j.ymben.2016.12.004.
Article
CAS
PubMed
Google Scholar
Borkowski O, Ceroni F, Stan G-B, Ellis T. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr Opin Microbiol. 2016;33:123–30. https://doi.org/10.1016/j.mib.2016.07.009.
Article
CAS
PubMed
Google Scholar
Boo A, Ellis T, Stan G-B. Host-aware synthetic biology. Curr Opin Syst Biol. 2019;14:66–72. https://doi.org/10.1016/j.coisb.2019.03.001.
Article
Google Scholar
Cardinale S, Arkin AP. Contextualizing context for synthetic biology: identifying causes of failure of synthetic biological systems. Biotechnol J. 2012;7:856–66. https://doi.org/10.1002/biot.201200085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikolados E-M, Weiße AY, Ceroni F, Oyarzún DA. Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol. 2019;8:1231–40. https://doi.org/10.1021/acssynbio.8b00531.
Article
CAS
PubMed
Google Scholar
Santos CNS, Regitsky DD, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Commun. 2013;4:2503. https://doi.org/10.1038/ncomms3503.
Article
CAS
PubMed
Google Scholar
Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11:508–20. https://doi.org/10.1038/nmeth.2926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceroni F, Algar R, Stan G-B, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015;12:415–8. https://doi.org/10.1038/nmeth.3339.
Article
CAS
PubMed
Google Scholar
Fischer E, Sauer U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet. 2005;37:636–40. https://doi.org/10.1038/ng1555.
Article
CAS
PubMed
Google Scholar
Muntel J, Fromion V, Goelzer A, Maaβ S, Mäder U, Büttner K, et al. Comprehensive absolute quantification of the cytosolic proteome of bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE). Mol Cell Proteom. 2014;13:1008–19. https://doi.org/10.1074/mcp.M113.032631.
Article
CAS
Google Scholar
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution (N Y). 2014;68:2559–70. https://doi.org/10.1111/evo.12468.
Article
CAS
Google Scholar
Lastiri-Pancardo G, Mercado-Hernández JS, Kim J, Jiménez JI, Utrilla J. A quantitative method for proteome reallocation using minimal regulatory interventions. Nat Chem Biol. 2020;16:1026–33. https://doi.org/10.1038/s41589-020-0593-y.
Article
CAS
PubMed
Google Scholar
Nikolados E-M, Weiße AY, Oyarzún DA. Prediction of cellular burden with host-circuit models. arXiv e-prints. 2020. arXiv:2004.00995.
Weiße AY, Oyarzún DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci. 2015;112:E1038 LP-E1047. doi:https://doi.org/10.1073/pnas.1416533112.
Liao C, Blanchard AE, Lu T. An integrative circuit–host modelling framework for predicting synthetic gene network behaviours. Nat Microbiol. 2017;2:1658–66. https://doi.org/10.1038/s41564-017-0022-5.
Article
CAS
PubMed
Google Scholar
Liu CC, Jewett MC, Chin JW, Voigt CA. Toward an orthogonal central dogma. Nat Chem Biol. 2018;14:103–6. https://doi.org/10.1038/nchembio.2554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer AJ, Ellefson JW, Ellington AD. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. ACS Synth Biol. 2015;4:1070–6. https://doi.org/10.1021/sb500299c.
Article
CAS
PubMed
Google Scholar
Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nat Biotechnol. 2014;32:1276–81. https://doi.org/10.1038/nbt.3053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darlington APS, Kim J, Jiménez JI, Bates DG. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat Commun. 2018;9:695. https://doi.org/10.1038/s41467-018-02898-6.
Article
CAS
PubMed
PubMed Central
Google Scholar