Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21:204–7.
CAS
PubMed
Google Scholar
Washer P, Joffe H. The, “hospital superbug”: social representations of MRSA. Soc Sci Med. 2006;63:2141–52.
PubMed
Google Scholar
Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI. Biophysical principles predict fitness landscapes of drug resistance. Proc Natl Acad Sci. 2016;113:E1470–8.
CAS
PubMed
PubMed Central
Google Scholar
Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A-S, Maziers N, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol. 2019;4:112–23.
PubMed
Google Scholar
Sandegren L, Andersson DI. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol. 2009;7:578–88.
CAS
PubMed
Google Scholar
Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.
PubMed
Google Scholar
Shim JE, Lee T, Lee I. From sequencing data to gene functions: co-functional network approaches. Anim Cells Syst. 2017;21:77–83.
CAS
Google Scholar
Azhagesan K, Ravindran B, Raman K. Network-based features enable prediction of essential genes across diverse organisms. PLoS ONE. 2018;13:e0208722.
PubMed
PubMed Central
Google Scholar
Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Brief Bioinform. 2020. https://doi.org/10.1093/bib/bbz017.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Acencio ML, Lemke N. Predicting essential genes and proteins based on machine learning and network topological features: a comprehensive review. Front Physiol. 2016. https://doi.org/10.3389/fphys.2016.00075.
Article
PubMed
PubMed Central
Google Scholar
Miryala SK, Ramaiah S. Exploring the multi-drug resistance in Escherichia coli O157:H7 by gene interaction network: a systems biology approach. Genomics. 2019;111:958–65.
CAS
PubMed
Google Scholar
Hwang S, Kim CY, Ji S-G, Go J, Kim H, Yang S, et al. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep. 2016;6:26223.
CAS
PubMed
PubMed Central
Google Scholar
Kim H, Shin J, Kim E, Kim H, Hwang S, Shim JE, et al. YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res. 2014;42:D731–6.
CAS
PubMed
Google Scholar
Lee M, Pinto NA, Kim CY, Yang S, D’Souza R, Yong D, et al. Network integrative genomic and transcriptomic analysis of carbapenem-resistant Klebsiella pneumoniae strains identifies genes for antibiotic resistance and virulence. mSystems. 2019. https://doi.org/10.1128/mSystems.00202-19.
Article
PubMed
PubMed Central
Google Scholar
Lapierre P, Gogarten JP. Estimating the size of the bacterial pan-genome. Trends Genet TIG. 2009;25:107–10.
CAS
PubMed
Google Scholar
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11:472–7.
CAS
PubMed
Google Scholar
Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238.
PubMed
PubMed Central
Google Scholar
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–73.
CAS
PubMed
Google Scholar
Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015;9:207–16.
CAS
PubMed
Google Scholar
Shin J, Lee I. Co-inheritance analysis within the domains of life substantially improves network inference by phylogenetic profiling. PLoS ONE. 2015;10:e0139006.
PubMed
PubMed Central
Google Scholar
Shim JE, Lee I. Weighted mutual information analysis substantially improves domain-based functional network models. Bioinformatics. 2016;32:2824–30.
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(Database issue):D607–13.
CAS
PubMed
Google Scholar
Yu G. Gene ontology semantic similarity analysis using GOSemSim. In: Kidder BL, editor. Stem cell transcriptional networks: methods and protocols. Springer; 2020. p. 207–15. https://doi.org/10.1007/978-1-0716-0301-7_11.
Chapter
Google Scholar
Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinforma Oxf Engl. 2010;26:976–8.
CAS
Google Scholar
Kim H, Shim JE, Shin J, Lee I. EcoliNet: a database of cofunctional gene network for Escherichia coli. Database J Biol Databases Curation. 2015. https://doi.org/10.1093/database/bav001.
Article
Google Scholar
Calderone A, Castagnoli L, Cesareni G. mentha: a resource for browsing integrated protein-interaction networks. Nat Methods. 2013;10:690–1.
CAS
PubMed
Google Scholar
Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2.
CAS
PubMed
Google Scholar
Luo H, Gao F, Lin Y. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci Rep. 2015;5:13210.
CAS
PubMed
PubMed Central
Google Scholar
Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, et al. A global view of antibiotic resistance. FEMS Microbiol Rev. 2009;33:44–65.
CAS
PubMed
Google Scholar
Skalweit MJ, Li M. Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms. Drug Des Dev Ther. 2016;10:3013–20.
CAS
Google Scholar
Chandrakala B, Shandil RK, Mehra U, Ravishankar S, Kaur P, Usha V, et al. High-throughput screen for inhibitors of transglycosylase and/or transpeptidase activities of Escherichia coli penicillin binding protein 1b. Antimicrob Agents Chemother. 2004;48:30–40.
CAS
PubMed
PubMed Central
Google Scholar
Somprasong N, Hall CM, Webb JR, Sahl JW, Wagner DM, Keim P, et al. Burkholderia ubonensis meropenem resistance: insights into distinct properties of class A β-lactamases in Burkholderia cepacia complex and Burkholderia pseudomallei complex bacteria. MBio. 2020. https://doi.org/10.1128/mBio.00592-20.
Article
PubMed
PubMed Central
Google Scholar
Prescott RD, Decho AW. Flexibility and adaptability of quorum sensing in nature. Trends Microbiol. 2020. https://doi.org/10.1016/j.tim.2019.12.004.
Article
PubMed
PubMed Central
Google Scholar
Page R, Peti W. Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.
CAS
PubMed
Google Scholar
Asako H, Nakajima H, Kobayashi K, Kobayashi M, Aono R. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol. 1997;63:1428–33.
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Li J, Zhang H, Shi W, Liu Y. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in Northern China. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01916.
Article
PubMed
PubMed Central
Google Scholar
Collins B, Joyce S, Hill C, Cotter PD, Ross RP. TelA contributes to the innate resistance of Listeria monocytogenes to nisin and other cell wall-acting antibiotics. Antimicrob Agents Chemother. 2010;54:4658–63.
CAS
PubMed
PubMed Central
Google Scholar
Dickinson AW, Power A, Hansen MG, Brandt KK, Piliposian G, Appleby P, et al. Heavy metal pollution and co-selection for antibiotic resistance: a microbial palaeontology approach. Environ Int. 2019;132:105117.
CAS
PubMed
Google Scholar
Ramos J-L, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, et al. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev. 2015;39:555–66.
PubMed
Google Scholar
Boyd CD, Smith TJ, El-Kirat-Chatel S, Newell PD, Dufrene YF, O’Toole GA. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J Bacteriol. 2014;196:2775–88.
PubMed
PubMed Central
Google Scholar
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/Integrin a domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell. 2002;13:3369–87.
CAS
PubMed
PubMed Central
Google Scholar
Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453–64.
CAS
PubMed
Google Scholar
Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79:7116–21.
CAS
PubMed
PubMed Central
Google Scholar
Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-09058-4.
Article
PubMed
PubMed Central
Google Scholar
Cohen NR, Ross CA, Jain S, Shapiro RS, Gutierrez A, Belenky P, et al. A role for the bacterial GATC methylome in antibiotic stress survival. Nat Genet. 2016;48:581–6.
CAS
PubMed
PubMed Central
Google Scholar
Ghosh D, Veeraraghavan B, Elangovan R, Vivekanandan P. Antibiotic resistance and epigenetics: more to it than meets the eye. Antimicrob Agents Chemother. 2020. https://doi.org/10.1128/AAC.02225-19.
Article
PubMed
PubMed Central
Google Scholar
Sun D, Jeannot K, Xiao Y, Knapp CW. Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol. 2019;10:1933.
PubMed
PubMed Central
Google Scholar
Yu MK, Ma J, Ono K, Zheng F, Fong SH, Gary A, et al. DDOT: A Swiss army knife for investigating data-driven biological ontologies. Cell Syst. 2019;8:267-273.e3.
CAS
PubMed
PubMed Central
Google Scholar
The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.
Google Scholar
Kwon YK, Higgins MB, Rabinowitz JD. Antifolate-induced depletion of intracellular glycine and purines inhibits thymineless death in E. coli. ACS Chem Biol. 2010;5:787–95.
CAS
PubMed
PubMed Central
Google Scholar
Jacob-Dubuisson F, Mechaly A, Betton J-M, Antoine R. Structural insights into the signalling mechanisms of two-component systems. Nat Rev Microbiol. 2018;16:585–93.
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li WZ, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
CAS
PubMed
PubMed Central
Google Scholar
Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol. 2020;18:731–43.
CAS
PubMed
PubMed Central
Google Scholar
Rouli L, Merhej V, Fournier P-E, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015;7:72–85.
CAS
PubMed
PubMed Central
Google Scholar
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45(Database issue):D535–42.
CAS
PubMed
Google Scholar
Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42(Database issue):D581–91.
CAS
PubMed
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
CAS
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
PubMed
PubMed Central
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
CAS
PubMed
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005;33(Database Issue):D501–4.
CAS
PubMed
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.
CAS
PubMed
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
CAS
PubMed
PubMed Central
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. Mach Learn PYTHON. p. 6.
Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. 2008. p. 5.
Kramer M, Dutkowski J, Yu M, Bafna V, Ideker T. Inferring gene ontologies from pairwise similarity data. Bioinformatics. 2014;30:i34-42.
CAS
PubMed
PubMed Central
Google Scholar