Petersen E, Koopmans M, Go U, Hamer HH, Petrosillo N, Castelli F, Storgaard M, Al Khalili S, Simonsen L. Comparing SARS-COV-2 with SARS-COV and influenza pandemics. Lancet Infect Dis. 2020;20(9):238–2244.
Google Scholar
Smith GA, Enquist LW. Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu Rev Cell Dev Biol. 2002;18:135–61.
PubMed
CAS
Google Scholar
Beltran PMJ, Cook KC, Cristea IM. Exploring and exploiting proteome organization during viral infection. J Virol. 2017;91(18):00268–17.
Google Scholar
Gerold G, Bruening J, Weigel B, Pietschmann T. Protein interactions during the flavivirus and hepacivirus life cycle. Mol Cell Proteomics. 2017;16(4 suppl 1):75–91.
Google Scholar
Sadegh S, Matschinske J, Blumenthal DB, Galindez G, Kacprowski T, List M, Nasirigerdeh R, Oubounyt M, Pichlmair A, Rose TD, et al. Exploring the SARS-COV-2 virus-host-drug interactome for drug repurposing. Nat Commun. 2020;11(1):1–9.
Google Scholar
Wendt F, Milani ES, Wollscheid B. Elucidation of host-virus surfaceome interactions using spatial proteotyping. Adv Virus Res. 2021;109:105–34.
PubMed
CAS
Google Scholar
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res. 2021;109:63–104.
PubMed
Google Scholar
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and proteomics approaches to investigate early adenovirus-host cell interactions. J Mol Biol. 2018;430(13):1863–82.
PubMed
PubMed Central
CAS
Google Scholar
Gerold G, Bruening J, Pietschmann T. Decoding protein networks during virus entry by quantitative proteomics. Virus Res. 2016;218:25–39.
PubMed
CAS
Google Scholar
Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics. 2016;13(3):325–40.
PubMed
PubMed Central
CAS
Google Scholar
Greco TM, Cristea IM. Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics. 2017;16(4):5–14.
Google Scholar
Jean Beltran PM, Cook KC, Cristea IM. Exploring and exploiting proteome organization during viral infection. J Virol. 2017;91(18):00268–17.
Google Scholar
Bailer S, Haas J. Connecting viral with cellular interactomes. Curr Opin Microbiol. 2009;12(4):453–9.
PubMed
PubMed Central
CAS
Google Scholar
Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB. New world arenavirus clade c, but not clade a and b viruses, utilizes \(\alpha \)-dystroglycan as its major receptor. J Virol. 2002;76(10):5140–6.
PubMed
PubMed Central
Google Scholar
Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, et al. The intact molecular interaction database in 2012. Nucleic Acids Res. 2012;40(D1):841–6.
Google Scholar
Calderone A, Licata L, Cesareni G. Virusmentha: a new resource for virus-host protein interactions. Nucleic Acids Res. 2015;43(D1):588–92.
Google Scholar
Chatr-Aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M, Smolyar A, Castagnoli L, Vidal M, et al. Virusmint: a viral protein interaction database. Nucleic Acids Res. 2009;37(suppl-1):669–73.
Google Scholar
Ammari MG, Gresham CR, McCarthy FM, Nanduri B. Hpidb 20: a curated database for host-pathogen interactions. Database. 2016;1:9.
Google Scholar
Requião RD, Carneiro RL, Moreira MH, Ribeiro-Alves M, Rossetto S, Palhano FL, Domitrovic T. Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep. 2020;10(1):1–12.
Google Scholar
Rodrigo G, Daròs J-A, Elena SF. Virus-host interactome: putting the accent on how it changes. J Proteomics. 2017;156:1–4.
PubMed
CAS
Google Scholar
Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog. 2014;10(12):1004529.
Google Scholar
Eid F-E, ElHefnawi M, Heath LS. Denovo: virus-host sequence-based protein–protein interaction prediction. Bioinformatics. 2016;32(8):1144–50.
PubMed
CAS
Google Scholar
Li Y, Ilie L. Predicting protein–protein interactions using sprint. In: Protein–protein interaction networks. Springer; 2020. p. 1–11.
Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinform. 2017;18(1):1–8.
CAS
Google Scholar
Li Y. Computational methods for predicting protein–protein interactions and binding sites. 2020.
Chen K-H, Wang T-F, Hu Y-J. Protein–protein interaction prediction using a hybrid feature representation and a stacked generalization scheme. BMC Bioinform. 2019;20(1):1–17.
Google Scholar
Sarkar D, Saha S. Machine-learning techniques for the prediction of protein–protein interactions. J Biosci. 2019;44(4):1–12.
CAS
Google Scholar
Sudhakar P, Machiel, K, Vermeire S. Computational biology and machine learning approaches to study mechanistic microbiomehost interactions. 2020.
Mei S, Zhang K. In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein–protein interaction networks. Comput Struct Biotechnol J. 2020;18:100–13.
PubMed
CAS
Google Scholar
Dick K, Samanfar B, Barnes B, Cober ER, Mimee B, Molnar SJ, Biggar KK, Golshani A, Dehne F, Green JR, et al. Pipe4: fast ppi predictor for comprehensive inter-and cross-species interactomes. Sci Rep. 2020;10(1):1–15.
Google Scholar
Li BYS, Yeung LF, Yang G. Pathogen host interaction prediction via matrix factorization. In: 2014 IEEE international conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2014. p. 357–62.
Guven-Maiorov E, Tsai C-J, Ma B, Nussinov R. Interface-based structural prediction of novel host-pathogen interactions. In: Computational methods in protein evolution. Springer; 2019. p. 317–35.
Basit AH, Abbasi WA, Asif A, Gull S, Minhas FUAA. Training host-pathogen protein–protein interaction predictors. J Bioinform Comput Biol. 2018;16(04):1850014.
PubMed
Google Scholar
Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nat Methods. 2019;16(12):1315–22.
PubMed
PubMed Central
CAS
Google Scholar
Nouretdinov I, Gammerman A, Qi Y, Klein-Seetharaman J. Determining confidence of predicted interactions between HIV-1 and human proteins using conformal method. In: Biocomputing. World Scientific; 2012. p. 311–22.
Nourani E, Khunjush F, Durmuş S. Computational prediction of virus-human protein–protein interactions using embedding kernelized heterogeneous data. Mol BioSyst. 2016;12(6):1976–86.
PubMed
CAS
Google Scholar
Mei S, Zhu H. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks. Sci Rep. 2015;5(1):1–13.
Google Scholar
Cui G, Fang C, Han K. Prediction of protein–protein interactions between viruses and human by an SVM model. BMC Bioinform. 2012;13:1–10.
Google Scholar
Kim B, Alguwaizani S, Zhou X, Huang D-S, Park B, Han K. An improved method for predicting interactions between virus and human proteins. J Bioinform Comput Biol. 2017;15(01):1650024.
PubMed
CAS
Google Scholar
Loaiza CD, Kaundal R. Predhpi: an integrated web server platform for the detection and visualization of host-pathogen interactions using sequence-based methods. Bioinformatics. 2020;37:622–4.
Google Scholar
Zhou X, Park B, Choi D, Han K. A generalized approach to predicting protein–protein interactions between virus and host. BMC Genomics. 2018;19(6):69–77.
Google Scholar
Ma Y, He T, Tan Y-T, et al. Seq-bel: sequence-based ensemble learning for predicting virus-human protein–protein interaction. IEEE/ACM Trans Comput Biol Bioinform. 2020;1:1.
Google Scholar
Deng L, Zhao J, Zhang J. Predict the protein–protein interaction between virus and host through hybrid deep neural network. In: 2020 IEEE international conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 11–16.
Dey L, Chakraborty S, Mukhopadhyay A. Machine learning techniques for sequence-based prediction of viral-host interactions between SARS-COV-2 and human proteins. Biomed J. 2020;43(5):438–50.
PubMed
PubMed Central
Google Scholar
Yang X, Yang S, Li Q, Wuchty S, Zhang Z. Prediction of human-virus protein–protein interactions through a sequence embedding-based machine learning method. Comput Struct Biotechnol J. 2020;18:153–61.
PubMed
CAS
Google Scholar
Lanchantin J, Weingarten T, Sekhon A, Miller C, Qi Y. Transfer learning for predicting virus-host protein interactions for novel virus sequences. bioRxiv. 2021;2020-12.
Liu-Wei W, Kafkas S, Chen J, Dimonaco NJ, Tegnér J, Hoehndorf R. Deepviral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab147.
Article
PubMed
PubMed Central
Google Scholar
Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS ONE. 2014;9(11):112034.
Google Scholar
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A structure-informed atlas of human-virus interactions. Cell. 2019;178(6):1526–41.
PubMed
PubMed Central
CAS
Google Scholar
Liu D, Ma Y, Jiang X, He T. Predicting virus-host association by kernelized logistic matrix factorization and similarity network fusion. BMC Bioinform. 2019;20(16):1–10.
Google Scholar
Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC, Fuhrman JA, Braun J, Sun F, Ahlgren NA. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genomics Bioinform. 2020;2(2):044.
Google Scholar
Biswas S. Principles of machine learning-guided protein engineering. PhD thesis; 2020.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):447–52.
Google Scholar
Alonso-Lopez D, Gutiérrez MA, Lopes KP, Prieto C, Santamaría R, De Las Rivas J. Apid interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016;44(W1):529–35.
Google Scholar
Consortium U. Uniprot: a hub for protein information. Nucleic Acids Res. 2015;43(D1):204–12.
Google Scholar
Aranda B, Blankenburg H, Kerrien S, Brinkman FS, Ceol A, Chautard E, Dana JM, De Las Rivas J, Dumousseau M, Galeota E, et al. Psicquic and psiscore: accessing and scoring molecular interactions. Nat Methods. 2011;8(7):528–9.
PubMed
PubMed Central
CAS
Google Scholar
Martin S, Roe D, Faulon J-L. Predicting protein–protein interactions using signature products. Bioinformatics. 2005;21(2):218–26.
PubMed
CAS
Google Scholar
Mei S. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins. PLoS ONE. 2013;8(11):79606.
Google Scholar
Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40(D1):136–43.
Google Scholar
Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Travé G, Gibson TJ. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci. 2008;13(6580):603.
Google Scholar
Neduva V, Russell RB. Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol. 2006;17(5):465–71.
PubMed
CAS
Google Scholar
Le Q, Mikolov T. Distributed representations of sentences and documents. In: International conference on machine learning. PMLR; 2014. p. 1188–96.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026–37.
Google Scholar
Welch BL. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika. 1947;34(1–2):28–35.
PubMed
CAS
Google Scholar
Salzberg SL. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov. 1997;1(3):317–28.
Google Scholar
Kafadar K. Handbook of parametric and nonparametric statistical procedures. Am Stat. 1997;51(4):374.
Google Scholar
Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE. 2015;10(4):0121314.
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
PubMed
PubMed Central
CAS
Google Scholar
Carbon S, Douglass E, Good BM, Unni DR, Harris NL, Mungall CJ, Basu S, Chisholm RL, Dodson RJ, Hartline E, et al. The gene ontology resource: enriching a gold mine. Nucleic Acids Res. 2021;49(D1):325–34.
Google Scholar
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-COV-2. Proc Natl Acad Sci. 2020;117(21):11727–34.
PubMed
PubMed Central
CAS
Google Scholar
Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-COV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):1–19.
CAS
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, et al. SARS-COV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80.
PubMed
PubMed Central
CAS
Google Scholar
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.
PubMed
PubMed Central
CAS
Google Scholar
Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, et al. The pathogenicity of SARS-COV-2 in HACE2 transgenic mice. Nature. 2020;583(7818):830–3.
PubMed
CAS
Google Scholar
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, et al. SARS-COV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21(11):1327–35.
PubMed
PubMed Central
CAS
Google Scholar
Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, et al. Structure of MERS-COV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–93.
PubMed
PubMed Central
CAS
Google Scholar
Vankadari N, Wilce JA. Emerging covid-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human cd26. Emerg Microbes Infect. 2020;9(1):601–4.
PubMed
PubMed Central
CAS
Google Scholar
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase n is a receptor for human coronavirus 229e. Nature. 1992;357(6377):420–2.
PubMed
PubMed Central
CAS
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–9.
PubMed
PubMed Central
CAS
Google Scholar
Dong NT, Khosla M. A multitask transfer learning framework for novel virus-human protein interactions. bioRxiv. 2021. https://doi.org/10.1101/2021.03.25.437037.
Article
PubMed
PubMed Central
Google Scholar