PPI Network-based similarity between different arterial aneurysm subtypes
Previously, we built the Aneurysm Gene Database (AGD) to collect article-supported aneurysm-gene associations [6]. We found that research progresses on various human aneurysm subtypes were not in sync, mainly focusing on certain popular subtypes like AAA and TAA [7]. While little is known about less prevalent subtypes like ASH and TAD, of which only a small number of disease-associated genes is known (<25 genes in AGD database). Although recent studies reveal that molecular, cellular pathology contributing to development of different aneurysm subtypes are quite distinct, they still share partial common characteristics [2, 8]. Therefore, we first compare the overall similarity of disease genes between various aneurysm subtypes in a biological network view.
Based on the notion that gene sets locating close in the protein-protein interaction (PPI) network more likely share common features, network-based proximity between aneurysm-subtype-associated gene sets was calculated. Human aneurysm-subtype-associated gene sets were firstly downloaded from the AGD, which was constructed to collect article proved aneurysm-associated genes by our group. Seven aneurysm subtypes, each of which has at least 20 known associated genes in AGD, were retained for subsequent analysis (seen in Fig. 1a). Network-based methodology was then applied to quantify relationship between different aneurysmal diseases.
Generally, the network-based proximity between various aneurysm subtypes was defined as SAB (the separation score between aneurysm subtype A and aneurysm subtype B) and ranges from −3.5 × 10-2 (AD ~ AA) to 9.4 × 10-2 (CA ~ ASH). The average value of SAB between one aneurysm subtype and other subtypes was also calculated. Among all the studied subtypes, ASH presents a highest average proximity to the other 6 subtypes (average SAB = 5.1 × 10-2), suggesting high potential of ASH to own some distinct mechanisms. While the lowest average proximity to other subtypes was found in TAAD (average SAB = 1.4 × 10-2; shown in Fig. 1b), indicating that TAAD is more likely to share some common mechanisms with the other subtypes. Besides, result reveals that the aneurysmal diseases with highest network-based similarity to popular aneurysmal diseases AAA and TAA are TAA (TAA ~ AAA, SAB = 1.0 × 10−2) and AD (AD ~ TAA, SAB = −1.8 × 10-2; shown in Fig. 1c) respectively. Moreover, a highest network-based proximity was finally found between AD ~ AA, AD ~ TAAD (SAB = −1.9 × 10−2) and AD ~ TAA (shown in Fig. 1d). Above results suggest a high possibility to infer etiology and biology behind pathogenesis of AD from existing findings of AA, TAAD and TAA.
Computationally predicted driver genes of various aneurysm subtypes
Current research on aneurysm pathogenic mechanisms and development of related biomarkers are constrained by limited number of early-stage patients and defective experimental animal model [9, 10]. To facilitate early disease diagnosis and treatment, it is important to explore potential biomarkers, especially promising driver genes, of aneurysmal diseases through computational method. We therefore applied network-based approach Driver_IRW to identify genetic drivers of each individual aneurysm subtype. Driver_IRW is a novel computational method, of which the basic assumption is that, in the interaction network, genes with higher degree have higher possibility to transit from upstream seed nodes [11]. Thus, genes with higher final random walk scores are more likely to be disease driver genes.
First, we constructed differential co-expression network [12] of each individual aneurysm subtype. To do this, we collected appropriate transcriptome profiles, which include samples from both aneurysm patients and healthy control, of previously filtered 7 aneurysm subtypes from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [13]. Expression profiles of all subtypes except TAAD were acquired, thus 6 subtypes except TAAD were kept for subsequent analysis (Additional file 1: Table S1). Using expression data of patients and healthy donors, differential co-expression network (DCN) of each aneurysm subtype was constructed. By taking intersection edges of background PPI network [14], we further simplified relative DCN for different aneurysm subtypes (Additional file 1: Table S2). Next, aneurysm subtype-associated gene sets were extracted from the AGD database as the seed nodes. Using respective DCNs, seed nodes and expression matrices acquired before as input of Driver_IRW, final random walk scores of all nodes (genes) within each aneurysm subtype were calculated. The top 100 ranked genes with highest final scores were preliminarily listed as potential candidate driver genes.
To further narrow down the candidates and improve the prediction reliability, differential expression genes (DEGs) were calculated for every aneurysm subtype. Based on the transcriptome profiles of the 6 aneurysm subtypes, genes with significantly differential expression in aneurysm samples versus matched control were identified for each aneurysm subtype separately, with an adjusted p-value < 0.05. Intersection of top 100 ranked genes and DEGs was eventually filtered out as the final list of candidate driver genes for each subtype (seen in Fig. 2, Additional file 1: Table S3).
One straightforward approach to check the validity of the predicted driver genes is to compare the predictions with disease genes reported in literature. It is obviously that part of the driver genes had already been collected in the AGD database. However, considering that the AGD database was constructed in 2018, a number of new researches on aneurysmal diseases have come out in the past few years. Thus, for each candidate driver gene, we manually checked if there is any newly-published article supporting the associations between the predicted driver genes with corresponding aneurysm subtype. Results confirm that some of these genes have indeed been recently proved to be associated with aneurysm in human sample or animal model (Additional file 1: Table S4) even though they were not recorded in previous AGD database. Therefore, the recent literature evidence suggests the usefulness of the predicted driver gene list for the further investigation of aneurysmal diseases.
Functional enrichment analysis of driver genes suggest the involvement of ubiquitination in aneurysm pathology
Next, we tried to dig up novel mechanisms underlying aneurysm pathogenesis. Functional enrichment of above acquired top 100 ranked candidate drivers was performed for each aneurysm subtype respectively. Using the ‘clusterProfiler’ R package, the most enriched Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional category terms were obtained for different subtypes (Fig. 3). Obviously, enrichment result suggests an extensive involvement of ubiquitination associated pathways, including ubiquitin protein and ubiquitin-like protein binding activity, in all 6 studied subtypes. Through literature searches we found that the participant of ubiquitination related proteins (e.g. UCHL1, RNF213, UBR3, ARIH1) in pathogenesis of above-mentioned human aneurysm subtypes (ASH, AAA, CA, AA, AD) has been widely reported before [15,16,17,18,19,20,21]. As we already know, the ubiquitin-proteasome system (UPS) is a critical pathway in eukaryotic cells which functions through degrading cytosolic and nuclear proteins. By regulating relevant cell proteins, the UPS is essential for various important biological processes like inflammation and phenotypic changes [22]. Thus, we presumed that ubiquitin binding activity might play a role aneurysm development through regulation of vascular inflammation and vascular smooth muscle cells (VSMCs) phenotype switch. Also, some articles report that variants of ubiquitination associated genes might predispose to aneurysmal diseases, for example RNF213 variants for CA/ASH [20]. Therefore, we speculated that ubiquitination might be a mutual risk factor for various aneurysmal diseases.
Involvement of apoptotic programmed cell death in aneurysm development
Also, functional enrichment result reveals a consistent association with mitochondrial outer membrane permeabilization (MOMP) involved programmed cell death (PCD) pathway of all investigated aneurysm subtypes (seen in Fig. 4a). As evolutionally conserved suicide process of cell, PCD is critical to survival, development and disease pathogenesis in human. Up to now, several modes of PCD have been reported, including apoptosis, necroptosis, autophagy and pyroptosis [23]. It is well acknowledged that MOMP plays a critical role in apoptosis. In human, the apoptosis signaling is mainly classified into the ‘extrinsic’ pathway and the ‘intrinsic’ (also called the mitochondrial) pathway [24]. When a cell receives apoptosis stimulus, MOMP would commit it to die by the ‘intrinsic’ way. The process is predominately driven by B-cell lymphoma protein-2 (BCL-2) family members, including anti-apoptotic proteins (e.g. BCL-2), pro-apoptotic effectors (e.g. BAK, BAX) and BH3-only proteins (e.g. BID). Regulated by the BCL-2, MOMP would be induced in the mitochondrial outer membrane, promoting subsequent release of cytochrome c from mitochondrial to the cytosol. Once translocated to the cytosol, cytochrome c would interact directly with apoptotic protease-activating factor-1 (APAF1), forming the apoptosome complex. The apoptosome would then activate the initiator caspase-9, leading to downstream activation of executioner caspases (e.g. caspase-3, caspase-7). In response, executioner caspases would cleave and activate other executioner caspases, inducing apoptosis cascade and amplifying the apoptotic signaling (seen in Fig. 4b) [23, 25, 26].
Previously published researches have observed elevation of mitochondrial-apoptosis-dependent cell death of VSMCs in human aneurysm tissue (TAAD, AAA), provoking VSMC loss and aneurysm progression [27, 28]. In this research, result of afore performed DEG analysis highlights a potential involvement of BCL-2-mediated mitochondrial apoptosis pathway which functions through downstream activation of caspase-3 in pathogenesis of ASH as well as CA. In human ASH samples, significant decreasing expression of BCL-2 (adjusted p-value = 7.27 × 10-5) and increasing expression of APAF1 (adjusted p-value = 3.01 × 10-2) were identified compared to that in healthy samples. Also, higher expressions of genes including BID (adjusted p-value = 1.72 × 10-5), BAX (adjusted p-value = 3.89 × 10-8), SCO2 (adjusted p-value = 2.68 × 10-5) and CASP3 (adjusted p-value = 3.43 × 10-2) were observed in tissue sampled from CA patients than that from healthy donors (shown in Fig. 4c). Among them, SCO2 is a cytochrome c oxidase assembly factor which could facilitate reactive oxygen species (ROS) generation and positively regulate apoptosis signaling [29]. Based on these findings, we speculate that the BCL-2-mediated ‘intrinsic’ apoptosis pathway might widely function in various aneurysmal diseases, promoting VSMCs phenotype switch, thus might be a novel therapeutic target for aneurysm prevention and treatment.
Pyroptotic programmed cell death and aneurysm pathogenesis
Further, we investigated whether other forms of PCD contribute to aneurysm pathogenesis, considering they share some common features and signaling molecules. DEG result reveals a significant expression level change of key pyroptosis-regulation genes in human ASH and CA samples (seen in Fig. 5a). As we already know, similar to apoptosis, pyroptosis is an inflammatory PCD pathway, which was proposed by Cookson and Brennan in 2001. While different from typical apoptosis, pyroptosis is characterized by BCL-2-resistant, caspase-3-independent and caspase-1-dependent [30]. Canonically, the pyroptosis process is activated with formation of inflammasome sensors in response to danger signal stimulus. The inflammasomes are intracellular multiprotein complexes, which mainly nucleate around Nucleotide-binding, Leucine-rich Repeat containing proteins (NLRP) family member, such as NLRP3, NLRP12 [31]. Inflammatory caspase (human caspase-1/4/5) would then be recruited and activated, leading to pyroptosis. Activation of caspase-1 would then lead to maturation and secretion of pro-inflammatory factors (IL1β, IL18) and to pyroptosis (seen in Fig. 5b).
Recently, contributions of pyroptotic cell death to development of human AAA and AD have been reported [32,33,34]. Here we observed significant upregulation of NLRP3 (adjusted p-value = 6.64 × 10−4), CASP1 (adjusted p-value = 1.25 × 10−3), CASP5 (adjusted p-value = 1.54 × 10−2), IL1B (adjusted p-value = 9.44 × 10−5) and IL18 (adjusted p-value = 7.01 × 10−5) in human CA samples compared to that in healthy control. Similarly, significant increased expression level of genes including NLRP12 (adjusted p-value = 4.77 × 10−3), CASP1 (adjusted P-value = 2.75 × 10-2), CASP4 (adjusted p-value = 8.90 × 10−3) as well as CASP5 (adjusted p-value = 1.85 × 10-2) was identified in human ASH samples (Fig. 5a). Altogether, these findings suggest a general participation of canonical NLRP-3-dependent pyroptosis as well as non-canonical pyroptosis in multiple aneurysmal diseases, indicating great potential of pyroptosis as novel target for aneurysm prevention.