Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/caac.21654.
Article
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCA N estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-smallcell lung cancer: final results of a phase III trial. J Clin Oncol. 2012;30:2055–62. https://doi.org/10.1200/JCO.2011.39.5848.
Article
CAS
Google Scholar
Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383:640–9. https://doi.org/10.1056/NEJMoa1916623.
Article
CAS
Google Scholar
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019. https://doi.org/10.1186/s13045-019-0779-5.
Article
Google Scholar
Constantinidou A, Alifieris C, Trafalis DT. Targeting programmed cell death−1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther. 2019;194:84–106. https://doi.org/10.1016/j.pharmthera.2018.09.008.
Article
CAS
Google Scholar
Chai Y, Xinyu Wu, Zou Y, Zhang X, Bai H, Dong M, et al. Immunotherapy combined with chemotherapy versus chemotherapy alone as the first-line treatment of PD-L1-negative and driver-gene-negative advanced nonsquamous non-small-cell lung cancer: an updated systematic review and meta-analysis. Thorac Cancer. 2022;22:3124–32. https://doi.org/10.1111/1759-7714.14664.
Article
CAS
Google Scholar
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. https://doi.org/10.1056/NEJMoa1606774.
Article
CAS
Google Scholar
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small cell lung cancer with PD-L1 tumor proportion score $ 50. J Clin Oncol. 2021;39:2339–49. https://doi.org/10.1200/JCO.21.00174.
Article
CAS
Google Scholar
Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393:1819–30. https://doi.org/10.1016/S0140-6736(18)32409-7.
Article
CAS
Google Scholar
Fridman WH, Dieu-Nosjean MC, Pagès F, Cremer I, Damotte D, Catherine SF, et al. The immune microenvironment of human tumors: general significance and clinical impact. Cancer Microenviron. 2013;6:117–22. https://doi.org/10.1007/s12307-012-0124-9.
Article
CAS
Google Scholar
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, et al. The immune microenvironment: a major player in human cancers. Int Arch Allergy Immunol. 2014;164:13–26. https://doi.org/10.1159/000362332.
Article
CAS
Google Scholar
Zou W. Mechanistic insights into cancer immunity and immunotherapy. Cell Mol Immunol. 2018;5:419–20. https://doi.org/10.1038/s41423-018-0011-5.
Article
CAS
Google Scholar
Luo F, Fei-Teng Lu, Cao J-X, Ma W-J, Xia Z-F, Zhan J-H, et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett. 2022;531:39–56. https://doi.org/10.1016/j.canlet.2022.01.027.
Article
CAS
Google Scholar
Ravi R, Noonan KA, Pham V, Bedi R, Zhavoronkov A, Ozerov IV, et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun. 2018;1:741. https://doi.org/10.1038/s41467-017-02696-6.
Article
CAS
Google Scholar
Li TS, Liu ZH, Fu X, Chen YQ, Zhu SL, Zhang J. Co-delivery of Interleukin-12 and doxorubicin loaded Nano-delivery system for enhanced immunotherapy with polarization toward M1-type Macrophages. Eur J Pharm Biopharm. 2022;177:175–83. https://doi.org/10.1016/j.ejpb.2022.07.002.
Article
CAS
Google Scholar
Bao X, Shi R, Zhao T, Wang Y. Immune landscape and a novel immunotherapy-related gene signature associated with clinical outcome in early-stage lung adenocarcinoma. J Mol Med (Berl). 2020;6:805–18. https://doi.org/10.1007/s00109-020-01908-9.
Article
CAS
Google Scholar
Yin Q, Chen W, Zhang C, Wei Z. A convolutional neural network model for survival prediction based on prognosis-related cascaded Wx feature selection. Lab Invest. 2022;10:1064–74. https://doi.org/10.1038/s41374-022-00801-y.
Article
CAS
Google Scholar
Liu ZY, Liu JL, Liu XY, Wang X, Xie QS, Zhang XL, et al. CTR-DB. An omnibus for patient-derived gene expression signatures correlated with cancer drug response. Nucl Acids Res. 2022;50:D1184–99. https://doi.org/10.1093/nar/gkab860.
Article
CAS
Google Scholar
Kim JY, Choi JK, Jung H. Genome-wide methylation patterns predict clinical benefit of immunotherapy in lung cancer. Clin Epigenet. 2020;1:119. https://doi.org/10.1186/s13148-020-00907-4.
Article
CAS
Google Scholar
Cho JW, Hong MH, Ha SJ, Kim YJ, Cho BC, Lee I, et al. Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer. Exp Mol Med. 2020;52:1550–63. https://doi.org/10.1186/s13148-020-00907-4.
Article
CAS
Google Scholar
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523. https://doi.org/10.1038/s41467-019-09234-6.
Article
CAS
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.
Article
Google Scholar
Der SD, Sykes J, Pintilie M, Zhu CQ, Strumpf D, Liu N, et al. Validation of a histology-independent prognostic gene signature for early-stage. non-small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9:59–64. https://doi.org/10.1097/JTO.0000000000000042.
Article
CAS
Google Scholar
Takeuchi T, Tomida S, Yatabe Y, Kosaka T, Osada H, Yanagisawa K, et al. Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J Clin Oncol. 2006;11:1679–88. https://doi.org/10.1200/JCO.2005.03.8224.
Article
CAS
Google Scholar
Hight SK, Mootz A, Kollipara RK, McMillan E, et al. An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia. 2020;22(8):294–310.
Article
CAS
Google Scholar
Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;1:218. https://doi.org/10.1186/s13059-016-1070-5.
Article
CAS
Google Scholar
Liu CG, Hu FF, Xia MX, Han L, Zhang Q, Guo AY, et al. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;21:3771–2. https://doi.org/10.1093/bioinformatics/bty411.
Article
CAS
Google Scholar
Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, et al. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers (Basel). 2020;12:1788. https://doi.org/10.3390/cancers12071788.
Article
CAS
Google Scholar
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.
Article
Google Scholar
Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang HX, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci. 2020;7:1902880. https://doi.org/10.1002/advs.201902880.
Article
CAS
Google Scholar
Miao YR, Xia MX, Luo M, Luo T, Yang M, Guo AY. ImmuCellAI-mouse: a tool for comprehensive prediction of mouse immune cell abundance and immune microenvironment depiction. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab711.
Article
Google Scholar
Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–61. https://doi.org/10.1016/j.cell.2013.08.003.
Article
CAS
Google Scholar
Wanjuan Y, Jorge S, Patricia G, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl Acids Res. 2013;41:D95-61. https://doi.org/10.1093/nar/gks1111.
Article
CAS
Google Scholar
Wang JH, Zhao LF, Wang HF, Wen YT, Jiang KK, Mao XM, et al. GenCLiP 3: mining human genes’ functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics. 2020;36:1973–5. https://doi.org/10.1093/bioinformatics/btz807.
Article
CAS
Google Scholar
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu HX, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8. https://doi.org/10.1038/s41591-018-0136-1.
Article
CAS
Google Scholar
Wang Q, Li M, Yang M, Yang Y, Song F, Zhang W, et al. Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: implications for immune checkpoint blockade therapy. Aging (Albany NY). 2020;12:3312–39. https://doi.org/10.18632/aging.102814.
Article
CAS
Google Scholar
West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37. https://doi.org/10.1016/s1470-2045(19)30167-6.
Article
CAS
Google Scholar
Cheng Y, Zhang L, Hu J, et al. Keynote-407 China Extension study: Pembrolizumab (pembro) plus chemotherapy in Chinese patients with metastatic squamous NSCLC. Ann Oncol. 2019. https://doi.org/10.1093/annonc/mdz446.019.
Article
Google Scholar
Herbst RS, Giaccone G, Marinis F, Reinmuth N, Vergnenegre N, Barrios CH, et al. Atezolizumab for first-line treatment of PD-L1–Selected patients with NSCLC. N Engl J Med. 2020;383:1328–39. https://doi.org/10.1056/NEJMoa1917346.
Article
CAS
Google Scholar
Gandhi L, Delvys RA, Gadgeel S, Esteban E, Felip E, Angelis FD, et al. Pembrolizumab plus chemotherapy in metastatic non-small-Cell lung Cancer. N Engl J Med. 2020;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.
Article
Google Scholar
Hellmann MD, Luis PA, Caro RB, Zurawski B, Kim SW, Carcereny CE, et al. Nivolumab plus ipilimumab in advanced non-small-Cell lung Cancer. N Engl J Med. 2019;381:2020–31. https://doi.org/10.1056/NEJMoa1910231.
Article
CAS
Google Scholar
Passaro A, Attili L, Morganti S, Signore ED, Gianoncelli L, Spitaleri G, et al. Clinical features affecting survival in metastatic NSCLC treated with immunotherapy: a critical review of published data. Cancer Treat Rev. 2020;89:102085. https://doi.org/10.1016/j.ctrv.2020.102085.
Article
CAS
Google Scholar
Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26. https://doi.org/10.1056/NEJMoa1613493.
Article
CAS
Google Scholar
Fehrenbacher L, Spira A, Ballinger M, Creelan B, Horn L, Steins M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre. open-label. phase 2 randomised controlled trial. Lancet. 2016;10030:1837–46. https://doi.org/10.1016/S0140-6736(16)00587-0.
Article
CAS
Google Scholar
Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Pawel JV, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3. open-label. multicentre randomised controlled trial. Lancet. 2017;389:255–65. https://doi.org/10.1016/S0140-6736(16)32517-X.
Article
Google Scholar
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51. https://doi.org/10.1056/NEJMoa1810865.
Article
CAS
Google Scholar
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus Ipilimumab in advanced non-small cell lung cancer. N Engl J Med. 2019;381(21):2020–31. https://doi.org/10.1056/NEJMoa1910231.
Article
CAS
Google Scholar
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell. 2021;3:596-614.e14. https://doi.org/10.1016/j.cell.2021.01.002.
Article
CAS
Google Scholar
Powell SF, Abreu DR, Langer CJ, Tafreshi A, Ares LP, Koppet HG, et al. 1483PD - Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) in NSCLC with brain metastases: pooled analysis of KEYNOTE-021, 189, and 407. Ann Oncol. 2019;30:v606-7. https://doi.org/10.1093/annonc/mdz260.005.
Article
Google Scholar
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/ microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9. https://doi.org/10.1200/JCO.2017.76.9901.
Article
CAS
Google Scholar
West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS- mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J Immunother Cancer. 2022;2:e003027. https://doi.org/10.1136/jitc-2021-003027.
Article
Google Scholar
Alessi JV, Ricciuti B, Spurr LF, Gupta H, Li YY, Glass C, et al. SMARCA4 and Other SWItch/Sucrose nonfermentable family genomic alterations in NSCLC: clinicopathologic characteristics and outcomes to immune checkpoint inhibition. J Thorac Oncol. 2021;7:1176–87. https://doi.org/10.1016/j.jtho.2021.03.024.
Article
CAS
Google Scholar
Powell SF, Abreu DR, Langer CJ, Tafreshi A, Ares LP, Koppet HG, et al. 1483PD - Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) in NSCLC with brain metastases: pooled analysis of KEYNOTE-021. 189. and 407. Ann Oncol. 2019;30:v606-7. https://doi.org/10.1093/annonc/mdz260.005.
Article
Google Scholar
Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, et al. Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B. 2021;10:2983–94. https://doi.org/10.1016/j.apsb.2021.01.003.
Article
CAS
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
CAS
Google Scholar
Fridman WH, Pages F, Sautes-Fridman C, Galon J, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;14:298–306. https://doi.org/10.1038/nrc3245.
Article
CAS
Google Scholar
Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Samer AS, Andersen S, et al. The role of tumor-infiltrating immune cells and chronic inflammation atthe tumor site on cancer development. progression and prognosis:emphasis on non-small cell lung cancer. J Thorac Oncol. 2011;6:824–33. https://doi.org/10.1097/JTO.0b013e3182037b76.
Article
Google Scholar
Salgaller ML. The development of immunotherapies for non-small cell lung cancer. Expert Opin Biol Ther. 2002;2:265–78. https://doi.org/10.1517/14712598.2.3.265.
Article
CAS
Google Scholar
Remark R, Becker C, Gomez JE, Damotte D, Dieu-Nosjean MC, Fridman CS, et al. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am J Respir Crit Care Med. 2015;191:377–90. https://doi.org/10.1164/rccm.201409-1671PP.
Article
CAS
Google Scholar
Giraldo NA, Becht E, Remark R, Damotte D, Sautès-Fridman C, Fridman WH. The immune contexture of primary and metastatic human tumours. Curr Opin Immunol. 2014;27:8–15. https://doi.org/10.1016/j.coi.2014.01.001.
Article
CAS
Google Scholar
Bremnes RM, Busund LT, Kilvaer TL, Andersen S, Richardsen E, Paulsen EE, et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol. 2016;11:789–800. https://doi.org/10.1016/j.jtho.2016.01.015.
Article
Google Scholar
Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10:361–71. https://doi.org/10.1038/nrc2826.
Article
CAS
Google Scholar
Zhang J, Yang M, Li D, Zhu SQ, Zou J, Xu SS, et al. Homeobox C8 is a transcriptional repressor of E-cadherin gene expression in non-small cell lung cancer. Int J Biochem Cell Biol. 2019;114:105557. https://doi.org/10.1016/j.biocel.2019.06.005.
Article
CAS
Google Scholar
Liu H, Zhang M, Xu S, Zhang J, Zou J, Yang C, et al. HOXC8 promotes proliferation and migration through transcriptional up-regulation of TGFbeta1 in non-small cell lung cancer. Oncogenesis. 2018;7:1. https://doi.org/10.1038/s41389-017-0016-4.
Article
CAS
Google Scholar
Yu MJ, Yu SJ, Zhou W, Yi B, Liu YH. HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. Int Immunopharmacol. 2021;101:108293. https://doi.org/10.1016/j.intimp.2021.108293.
Article
CAS
Google Scholar
Lee TL, Shyu YC, Hsu PH, Chang CW, Wen SC, Hsiao WY, et al. JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation of murine erythroleukemia cells. Proc Natl Acad Sci USA. 2010;107:52–7. https://doi.org/10.1073/pnas.0909153107.
Article
Google Scholar
Kapralova K, Lanikova L, Lorenzo F, Song YH, Horvathova M, Divoky V, et al. RUNX1 and NF-E2 upregulation is not specific for MPNs. but is seen in polycythemic disorders with augmented HIF signaling. Blood. 2014;123:391–4. https://doi.org/10.1182/blood-2013-10-534222.
Article
CAS
Google Scholar
Wang XS, Prensner JR, Chen G, Cao Qi, Han Bo, Dhanasekaran SM, et al. An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer. Nat Biotechnol. 2009;27:1005–11. https://doi.org/10.1038/nbt.1584.
Article
CAS
Google Scholar
Dou R, Wang X, Zhang J. Prognostic value and immune infiltration analysis of nuclear factor erythroid-2 family members in ovarian cancer. Biomed Res Int. 2022. https://doi.org/10.1155/2022/8672258.
Article
Google Scholar
Klebanoff CA, Gattinoni L, Restifo NP. Sorting through subsets: Which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother. 2012;35:651–60. https://doi.org/10.1097/CJI.0b013e31827806e6.
Article
CAS
Google Scholar
Klebanoff CA, Gattinoni L, Parizi PT, Kerstann K, Cardones AR, Finkelstein SE, et al. Central Memory self/tumor-reactive CD8 T cellsconfer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA. 2005;102:9571–6. https://doi.org/10.1073/pnas.0503726102.
Article
CAS
Google Scholar
Lee MH, Murphy G. Matrix metalloproteinases at a glance. J Cell Sci. 2004;117:4015–6. https://doi.org/10.1242/jcs.01223.
Article
CAS
Google Scholar
Bloomston M, Zervos EE, Rosemurgy AS. Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol. 2002;9:668–74. https://doi.org/10.1007/BF02574483.
Article
Google Scholar
Stetler-Stevenson WG. Progelatinase A activation during tumor cell invasion. Invas Metastasis. 1994;14:259–68.
CAS
Google Scholar
Kleiner DE, Stetler-Stevenson WG. Matrix metallo- proteinases and metastasis. Cancer Chemother Phar-macol. 1999;43:S42-51.
Article
CAS
Google Scholar
Sternlicht MD, Werb Z. How matrix metalloprotei- nases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.
Article
CAS
Google Scholar
Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res. 2005;11:1086–92.
Article
CAS
Google Scholar
Hung WY, Lee WJ, Cheng GZ, Tsai CH, Yang YC, Lai TC, et al. Blocking MMP-12-modulated epithelial-mesenchymal transition by repurposing penfluridol restrains LUAD metastasis via uPA/uPAR/TGF-β/Akt pathway. Cell Oncol. 2021;44:1087–103. https://doi.org/10.1007/s13402-021-00620-1.
Article
CAS
Google Scholar
Quan X, Liu X, Ye DM, Ding XL, Su XL. Forsythoside A alleviates high glucose-induced oxidative stress and inflammation in podocytes by inactivating MAPK signaling via MMP12 inhibition. Diabetes Metab Syndr Obes. 2021;28(14):1885–95. https://doi.org/10.2147/DMSO.S305092.
Article
Google Scholar
Kwon CH, Moon HJ, Park HJ, Ding XL, Su XL. S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-κB activation in gastric cancer cells. Mol Cells. 2013;3:226–34. https://doi.org/10.1007/s10059-013-2269-x.
Article
CAS
Google Scholar
Su W, Fan H, Chen M, Wang JL, Brand D, He XS, et al. Induced CD4+ forkhead box protein–positive T cells inhibit mast cell function and established contact hypersensitivity through TGF-β1. J Allergy Clin Immunol. 2012;130:444–52. https://doi.org/10.1016/j.jaci.2012.05.011.
Article
CAS
Google Scholar
Kim BS, Clinton J, Wang Q, Chang SH. Targeting ST2 expressing activated regulatory T cells in Kras-mutant lung cancer. Oncoimmunology. 2019;9:1682380. https://doi.org/10.1080/2162402X.2019.1682380.
Article
Google Scholar