Chou KC, Elrod DW: Protein subcellular location prediction. Protein Eng 1999, 12: 107–118. 10.1093/protein/12.2.107
Article
CAS
PubMed
Google Scholar
Chou KC, Cai YD: Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002, 277: 45765–45769. 10.1074/jbc.M204161200
Article
CAS
PubMed
Google Scholar
Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC: Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 2006, 30: 49–54. 10.1007/s00726-005-0225-6
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal Biochem 2009, 394: 269–274. 10.1016/j.ab.2009.07.046
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 2006, 347: 150–157. 10.1016/j.bbrc.2006.06.059
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 2007, 85(3):233–240. 10.1002/bip.20640
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Large-scale plant protein subcellular location prediction. J Cell Biochem 2007, 100: 665–678. 10.1002/jcb.21096
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. Journal of Proteome Research 2006, 5: 1888–1897. 10.1021/pr060167c
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: Gneg-mPLoc: A top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. Journal of Theoretical Biology 2010, in press.
Google Scholar
Chou KC, Shen HB: Large-scale predictions of gram-negative bacterial protein subcellular locations. Journal of Proteome Research 2006, 5: 3420–3428. 10.1021/pr060404b
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: Gpos-mPLoc: A top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. Protein & Peptide Letters 2009, 16: 1478–1484.
Article
CAS
Google Scholar
Chou KC, Shen HB: Review: Recent progresses in protein subcellular location prediction. Anal Biochem 2007, 370: 1–16. 10.1016/j.ab.2007.07.006
Article
CAS
PubMed
Google Scholar
Chou KC: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Current Proteomics 2009, 6(4):262–274. 10.2174/157016409789973707
Article
CAS
Google Scholar
Liu H, Yang J, Liu DQ, Shen HB, Chou KC: Using a new alignment kernel function to identify secretory proteins. Protein & Peptide Letters 2007, 14(2):203–208.
Article
Google Scholar
Wang M, Yang J, Chou KC: Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 2005, 28: 395–402. 10.1007/s00726-005-0189-6
Article
CAS
PubMed
Google Scholar
Cedano J, Aloy P, P'erez-Pons J, Querol E: Relation between amino acid composition and cellular location of proteins. Journal of Molecular Biology 1997, 266: 594–600. 10.1006/jmbi.1996.0804
Article
CAS
PubMed
Google Scholar
Chou K: Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochemical and Biophysical Research Communications 2000, 278: 477–483. 10.1006/bbrc.2000.3815
Article
CAS
PubMed
Google Scholar
Nanni L, Lumini A: Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization. Amino Acids 2008, 34: 653–660. 10.1007/s00726-007-0018-1
Article
CAS
PubMed
Google Scholar
Qiu JD, Huang JH, Liang RP, Lu XQ: Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform. Analytical Biochemistry 2009, 390(1):68–73. 10.1016/j.ab.2009.04.009
Article
CAS
PubMed
Google Scholar
Lin H: The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition. J Theor Biol 2008, 252: 350–356. 10.1016/j.jtbi.2008.02.004
Article
CAS
PubMed
Google Scholar
Zeng YH, Guo YZ, Xiao RQ, Yang L, Yu LZ, Li ML: Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondrialocations based on auto covariance approach. J Theor Biol 2009, 59: 366–372. 10.1016/j.jtbi.2009.03.028
Article
Google Scholar
Ding YS, Zhang TL, Gu Q, Zhao PY, Chou KC: Using maximum entropy model to predict protein secondary structure with single sequence. Protein & Peptide Letters 2009, 16: 552–560.
Article
CAS
Google Scholar
Zhou XB, Chen C, Li ZC, Zou XY: Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 2007, 248: 546–551. 10.1016/j.jtbi.2007.06.001
Article
CAS
PubMed
Google Scholar
Ding YS, Zhang TL: Using Chou's pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognition Letters 2008, 29: 1887–1892. 10.1016/j.patrec.2008.06.007
Article
CAS
Google Scholar
Chen C, Chen L, Zou X, Cai P: Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine. Protein & Peptide Letters 2009, 16(1):27–31.
Article
Google Scholar
Ding H, Luo L, Lin H: Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition. Protein & Peptide Letters 2009, 16: 351–355.
Article
CAS
Google Scholar
Jiang X, Wei R, Zhang TL, Gu Q: Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein & Peptide Letters 2008, 15: 392–396.
Article
CAS
Google Scholar
Li FM, Li QZ: Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach. Protein & Peptide Letters 2008, 15(6):612–616.
Article
Google Scholar
Lin H, Ding H, Feng-Biao Guo FB, Zhang AY, Huang J: Predicting subcellular localization of mycobacterial proteins by using Chou's pseudo amino acid composition. Protein & Peptide Letters 2008, 15(No.7):739–744.
Article
CAS
Google Scholar
Esmaeili M, Mohabatkar H, Mohsenzadeh S: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 2010, 263(2):203–209. 10.1016/j.jtbi.2009.11.016
Article
CAS
PubMed
Google Scholar
Qiu JD, Huang JH, Shi SP, Liang RP: Using the concept of Chou's pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform. Protein & Peptide Letters 2010, 17: 715–712.
Article
CAS
Google Scholar
Gu Q, Ding YS, Zhang TL: Prediction of g-protein-coupled receptor classes in low homology using Chou's pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein Pept Lett 2010, 17(5):559–567. 10.2174/092986610791112693
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE 2010, 5(4):e9931. 10.1371/journal.pone.0009931
Article
PubMed Central
PubMed
Google Scholar
Chou KC, Shen HB: Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5(6):e11335. 10.1371/journal.pone.0011335
Article
PubMed Central
PubMed
Google Scholar
Bhasin M, Raghava G: ELSpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acid Res 2004, (32 Web Server):W414-W419. 10.1093/nar/gkh350
Alexander Z, Cheng S: An automated combination of kernels for predicting protein subcellular localization. NIPS 2007, workshop on Machine Learning in Computational Biology
Dijk A, Bosch D, Braak C, Krol A, Ham R: Predicting sub-Golgi localization of type II membrane proteins. Bioinformatics 2008, 24(16):1779–1786. 10.1093/bioinformatics/btn309
Article
PubMed
Google Scholar
Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H: Predicting protein-protein interactions based only on sequences information. PNAS 2007, 104(11):4337–4341. 10.1073/pnas.0607879104
Article
PubMed Central
CAS
PubMed
Google Scholar
Schneider G, Fechner U: Review advances in the prediction of protein targeting signals. Proteomics 2004, 4: 1571–1580. 10.1002/pmic.200300786
Article
CAS
PubMed
Google Scholar
Hoglund A, Donnes P, Blum T, Adolph H, Kohlbacher O: MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006, 22(10):1158–1165. 10.1093/bioinformatics/btl002
Article
PubMed
Google Scholar
Marcotte E, Xenarios I, van Der Bliek A, Eisenberg D: Localizing proteins in the cell from their phylogenetic profiles. Proc Natl Acad Sci 1997, 12115–12120.
Google Scholar
Mak M, Guo J, Kung S: PairProSVM: protein subcellular localization based on local pairwise profile alignment and SVM. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008, 5(3):416–422. 10.1109/TCBB.2007.70256
Article
CAS
PubMed
Google Scholar
Rangwala H, Karypis G: Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 2005, 21(23):4239–4247. 10.1093/bioinformatics/bti687
Article
CAS
PubMed
Google Scholar
Kuang R, Ie E, Wang K, Siddiqi M, Freund Y, Leslie C: Profile-based string kernels for remote homology detection and motif extraction. J Bioinform Comput Biol 2005, 3: 527–550. 10.1142/S021972000500120X
Article
CAS
PubMed
Google Scholar
Leslie C, Eskin E, Cohen A, Weston J, Noble W: Mismatch string kernels for discriminative protein classification. Bioinformatics 2004, 20(4):467–476. 10.1093/bioinformatics/btg431
Article
CAS
PubMed
Google Scholar
Kuang R, Jianying Gu, Cai Hong, Wang Yufeng: Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel. Genetica 2009, 136: 189–209. 10.1007/s10709-008-9336-9
Article
PubMed Central
PubMed
Google Scholar
Leslie C, Eskin E, Noble W: The spectrum kernel: a string kernel for SVM protein classification. Proc Pac Biocomput Symp 2002, 7: 566–575.
Google Scholar
Mei S, Wang Fei: Amino acid classification based spectrum kernel fusion for protein subnuclear localization. BMC Bioinformatics 2010, 11(Suppl 1):S17. 10.1186/1471-2105-11-S1-S17
Article
PubMed Central
PubMed
Google Scholar
Shen H, Yanq J, Chou KC: Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 2007, 33: 57–67. 10.1007/s00726-006-0478-8
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 2007, 6: 1728–1734. 10.1021/pr060635i
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: Hum-mPLoc: an ensemble classifier for largescale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 2007, 355: 1006–1011. 10.1016/j.bbrc.2007.02.071
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms. Nature Protocols 2008, 3: 153–162. 10.1038/nprot.2007.494
Article
CAS
PubMed
Google Scholar
Chou K, Cai Y: A new hybrid approach to predict subcellular localization of proteins by incorporating Gene Ontology. Biochem Biophys Res Commun 2003, 311: 743–747. 10.1016/j.bbrc.2003.10.062
Article
CAS
PubMed
Google Scholar
Huang W, Tunq C, Ho S, Hwang S, Ho S: ProLoc-GO: utilizing informative gene ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics 2008, 9: 80. 10.1186/1471-2105-9-80
Article
PubMed Central
PubMed
Google Scholar
Huang W, Tung C, Huang H, Ho S: Predicting protein subnuclear localization using GO-amino-acid composition features. BioSystems 2009.
Google Scholar
Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17: 847–848. 10.1093/bioinformatics/17.9.847
Article
CAS
PubMed
Google Scholar
Chou K, Cai Y: Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun 2004, 320: 1236–1239. 10.1016/j.bbrc.2004.06.073
Article
CAS
PubMed
Google Scholar
Blum T, Briesemeister S, Kohlbacher O: MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 2009, 10: 274. 10.1186/1471-2105-10-274
Article
PubMed Central
PubMed
Google Scholar
Tung T, Lee D: A method to improve protein subcellular localization prediction by integrating various biological data sources. BMC Bioinformatics 2009, 10(Suppl 1):S43. 10.1186/1471-2105-10-S1-S43
Article
PubMed Central
PubMed
Google Scholar
Lee K, Chuang H, Beyer A, Sung M, Huh W, Lee B, Ideker T: Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species. Nucleic Acids Research 2008, 36(20):e136. 10.1093/nar/gkn619
Article
PubMed Central
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25: 25–29. 10.1038/75556
Article
PubMed Central
CAS
PubMed
Google Scholar
Lei Z, Dai Y: Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction. BMC Bioinformatics 2006, 7: 491. 10.1186/1471-2105-7-491
Article
PubMed Central
PubMed
Google Scholar
Dai W, Yang Q, Xue G, Yu Y: Boosting for Transfer Learning. Proceedings of the 24 th International Conference on Machine Learning 2007.
Google Scholar
Dai W, Chen Y, Xue G, Yang Q, Yu Y: Translated Learning: Transfer Learning across Different Feature Spaces. NIPS 2008.
Google Scholar
Yang Q, Chen Y, Xue G, Dai W, Yu Y: Heterogeneous Transfer Learning for Image Clustering via the Social Web. Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP 2009, 1–9.
Google Scholar
Pan S, Yang Q: A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 2010, 22(10):1345–1359. 10.1109/TKDE.2009.191
Article
Google Scholar
Alexander Z, Cheng S: Multiclass Multiple Kernel Learning. Proceedings of the 24th International Conference on Machine Learning
Apweiler R, Attwood T, Bairoch A, Bateman A, Birney E, Biswas M, et al.: The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Research 2001, 29(1):37–40. 10.1093/nar/29.1.37
Article
PubMed Central
CAS
PubMed
Google Scholar
Hofmann K, Bucher P, Falquet L, Bairoch A: The Prosite Database, Its Status in 1999. Nucleic Acids Res 1999, 27(1):215–219. 10.1093/nar/27.1.215
Article
PubMed Central
CAS
PubMed
Google Scholar
Attwood TK, Croning MD, Flower DR, Lewis AP, Mabey JE, Scordis P, et al.: The Database Formerly Known as Prints. Nucleic Acids Res 2000, 28(1):225–227. 10.1093/nar/28.1.225
Article
PubMed Central
CAS
PubMed
Google Scholar
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam Protein Families Database. Nucleic Acids Res 2000, 28(1):263–266. 10.1093/nar/28.1.263
Article
PubMed Central
CAS
PubMed
Google Scholar
Corpet F, Gouzy J, Kahn D: Recent Improvements of the Prodom Database of Protein Domain Families. Nucleic Acids Res 1999, 27(1):263–267. 10.1093/nar/27.1.263
Article
PubMed Central
CAS
PubMed
Google Scholar
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P: A Web-Based Tool for the Study of enetically Mobile Domains. Nucleic Acids Res 2000, 28(1):231–234. 10.1093/nar/28.1.231
Article
PubMed Central
CAS
PubMed
Google Scholar
Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, White O: TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 2001, 29(1):41–3. 10.1093/nar/29.1.41
Article
PubMed Central
CAS
PubMed
Google Scholar
Lanckriet G, DeBie T, Cristianini N, Jordan M, Noble W: A statistical framework for genomic data fusion. Bioinformatics 2004, 20(16):2626–2635. 10.1093/bioinformatics/bth294
Article
CAS
PubMed
Google Scholar
Hoglund A, Donnes P, Blum T, Adolph H, Kohlbacher O: MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006, 22(10):1158–1165. 10.1093/bioinformatics/btl002
Article
PubMed
Google Scholar
Pierleoni A, Luigi P, Fariselli P, Casadio R: BaCelLo: a balanced subcellular localization predictor. Bioinformatics 2006, 22(14):e408-e416. 10.1093/bioinformatics/btl222
Article
CAS
PubMed
Google Scholar
Lu Z, Hunter L: GO molecular function terms are predictive of subcellular localization. Pac Symp Biocomput 2005, 151–61. full_text
Google Scholar
Chou KC, Shen HB: Review: recent advances in developing web-servers for predicting protein attributes. Natural Science 2009, 2: 63–92. (openly accessible at) [http://www.scirp.org/journal/NS/] (openly accessible at) 10.4236/ns.2009.12011
Article
Google Scholar