Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 2008, 453 (7199): 1239-1243. 10.1038/nature07002.
Article
CAS
PubMed
Google Scholar
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature. 2008, 456 (7221): 470-476. 10.1038/nature07509.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG: Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PloS one. 2008, 3 (12): e3839-10.1371/journal.pone.0003839.
Article
PubMed Central
PubMed
Google Scholar
Wahlstedt H, Daniel C, Enstero M, Ohman M: Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res. 2009, 19 (6): 978-986. 10.1101/gr.089409.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet. 2005, 37 (4): 382-390. 10.1038/ng1532.
Article
CAS
PubMed
Google Scholar
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS biology. 2007, 5 (1): e8-10.1371/journal.pbio.0050008.
Article
PubMed Central
PubMed
Google Scholar
Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003, 34 (2): 166-176. 10.1038/ng1165.
Article
CAS
PubMed
Google Scholar
Zhu M, Deng X, Joshi T, Xu D, Stacey G, Cheng J: Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells. BMC Genomics. 2012, 13: 437-10.1186/1471-2164-13-437.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463 (7278): 178-183. 10.1038/nature08670.
Article
CAS
PubMed
Google Scholar
Wang Z, Libault M, Joshi T, Valliyodan B, Nguyen HT, Xu D, Stacey G, Cheng J: SoyDB: a knowledge database of soybean transcription factors. BMC Plant Biol. 2010, 10: 14-10.1186/1471-2229-10-14.
Article
PubMed Central
PubMed
Google Scholar
Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G: An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010, 63 (1): 86-99.
CAS
PubMed
Google Scholar
Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, et al: RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 2010, 10: 160-10.1186/1471-2229-10-160.
Article
PubMed Central
PubMed
Google Scholar
Trupti J, Kapil P, Michael RF, Levi DF, Qiuming Y, Jeffrey RC, Zheng W, Marc L, Laurent B, Babu V, Xiaolei W, et al: Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics. 2012, 13 (1): S15-10.1186/1471-2164-13-15.
Article
Google Scholar
Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010, 26 (7): 873-881. 10.1093/bioinformatics/btq057.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neil AM, Stephen FK, Andrew F, Raymond JL, Joann M, John AC, Alvaro JG, Faye DS, Ryan JK, Jennifer VV, et al: Management of high-throughput DNA sequencing projects: alpheus. J Comput Sci Syst Biol. 2008, 26 (1): 132-
Google Scholar
Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley RJ, Bilgin DD, Radwan O, Neece DJ, Clough SJ, May GD, et al: Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol. 2010, 152 (2): 541-552. 10.1104/pp.109.148379.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26 (1): 139-140. 10.1093/bioinformatics/btp616.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010, 26 (1): 136-138. 10.1093/bioinformatics/btp612.
Article
PubMed
Google Scholar
Joshi A, De Smet R, Marchal K, Van de Peer Y, Michoel T: Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics. 2009, 25 (4): 490-496. 10.1093/bioinformatics/btn658.
Article
CAS
PubMed
Google Scholar
Pe'er D, Regev A, Tanay A: Minreg: inferring an active regulator set. Bioinformatics. 2002, 18 (Suppl 1): S258-S267. 10.1093/bioinformatics/18.suppl_1.S258.
Article
PubMed
Google Scholar
Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput. 2002, 437-449.
Google Scholar
Hartigan JA, Wong MA: “Algorithm AS 136: a k-means clustering algorithm”. J R Stat Soc: Ser C: Appl Stat. 1979, 28 (1): 100-108.
Google Scholar
Wang Z, Eickholt J, Cheng J: MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics. 2010, 26 (7): 882-888. 10.1093/bioinformatics/btq058.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Z, Zhang XC, Le MH, Xu D, Stacey G, Cheng J: A protein domain co-occurrence network approach for predicting protein function and inferring species phylogeny. PloS one. 2011, 6 (3): e17906-10.1371/journal.pone.0017906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Z, Cao R, Cheng J: Three-level prediction of protein function by combining profile-sequence search, profile-profile search, and domain co-occurrence networks. BMC Bioinforma. 2013, 14 (S3): S3-
CAS
Google Scholar
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, et al: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32: D258-D261. 10.1093/nar/gkh036.
Article
CAS
PubMed
Google Scholar
UniProt C: Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012, 40: D71-D75.
Article
Google Scholar
Martin RC, Mok MC, Mok DW: Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci U S A. 1999, 96 (1): 284-289. 10.1073/pnas.96.1.284.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin RC, Mok MC, Habben JE, Mok DW: A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci U S A. 2001, 98 (10): 5922-5926. 10.1073/pnas.101128798.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K: A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science. 2007, 315 (5808): 101-104. 10.1126/science.1132514.
Article
CAS
PubMed
Google Scholar
Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J: A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science. 2007, 315 (5808): 104-107. 10.1126/science.1132397.
Article
CAS
PubMed
Google Scholar
Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S: Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J. 2012, 70 (3): 367-376. 10.1111/j.1365-313X.2011.04881.x.
Article
CAS
PubMed
Google Scholar
Gonzalez-Rizzo S, Crespi M, Frugier F: The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell. 2006, 18 (10): 2680-2693. 10.1105/tpc.106.043778.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009, 37: W202-W208. 10.1093/nar/gkp335.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS: Quantifying similarity between motifs. Genome Biol. 2007, 8 (2): R24-10.1186/gb-2007-8-2-r24.
Article
PubMed Central
PubMed
Google Scholar
Ma HS, Liang D, Shuai P, Xia XL, Yin WL: The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot. 2010, 61 (14): 4011-4019. 10.1093/jxb/erq217.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R: NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science. 2005, 308 (5729): 1789-1791. 10.1126/science.1111025.
Article
CAS
PubMed
Google Scholar
Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J: Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell. 2000, 12 (9): 1647-1666.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, et al: Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science. 2005, 308 (5729): 1786-1789. 10.1126/science.1110951.
Article
CAS
PubMed
Google Scholar
Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA: Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 2006, 142 (4): 1739-1750. 10.1104/pp.106.089508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yokota K, Soyano T, Kouchi H, Hayashi M: Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol. 2010, 51 (9): 1436-1442. 10.1093/pcp/pcq124.
Article
CAS
PubMed
Google Scholar
Koes RE, Francesca Quattrocchio MJN: The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays. 1994, 16 (2): 123-132. 10.1002/bies.950160209.
Article
CAS
Google Scholar
Richards DE, Richards DE, Peng J, Harberd NP: Plant GRAS and metazoan STATs: one family?. Bioessays. 2000, 22 (6): 573-577. 10.1002/(SICI)1521-1878(200006)22:6<573::AID-BIES10>3.0.CO;2-H.
Article
CAS
PubMed
Google Scholar
Nancy AE: Nodulation signaling in legumes depends on an NSP1-NSP2 complex. Plant Cell. 2009, 21 (2): 367-10.1105/tpc.109.210214.
Article
Google Scholar
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39: D561-D568. 10.1093/nar/gkq973.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fortes AM, Costa J, Santos F, Segui-Simarro JM, Palme K, Altabella T, Tiburcio AF, Pais MS: Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant Signal Behav. 2011, 6 (2): 258-269. 10.4161/psb.6.2.14503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM: Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol. 2010, 52 (1): 61-76. 10.1111/j.1744-7909.2010.00899.x.
Article
CAS
PubMed
Google Scholar
Simon SA, Meyers BC, Sherrier DJ: MicroRNAs in the rhizobia legume symbiosis. Plant Physiology. 2009, 151 (3): 1002-1008. 10.1104/pp.109.144345.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wash KB: Physiology of the legume nodule and its response to stress. Soil Biol Biochem. 1995, 27: 637-655. 10.1016/0038-0717(95)98644-4.
Article
Google Scholar
Chouhan S, Chauhan K, Kataria S, Guruprasad KN: Enhancement in leghemoglobin content of root nodules by exclusion of solar UV-A and UV-B radiation in soybean. J Plant Biol. 2008, 51 (2): 132-138. 10.1007/BF03030722.
Article
CAS
Google Scholar
Yamada H, Shimizu S, Kobayashi M: Hydratases involved in nitrile conversion: screening, characterization and application. Chemical Rec. 2001, 1 (2): 152-161. 10.1002/tcr.5.
Article
CAS
Google Scholar
Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, et al: Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology. 2007, 144 (2): 538-549. 10.1104/pp.107.098061.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gough J, Chothia C: SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 2002, 30 (1): 268-272. 10.1093/nar/30.1.268.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirsch S, Oldroyd GE: GRAS-domain transcription factors that regulate plant development. Plant Signal Behav. 2009, 4 (8): 698-700. 10.4161/psb.4.8.9176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE: GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant cell. 2009, 21 (2): 545-557. 10.1105/tpc.108.064501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eckardt NA: Nodulation signaling in legumes depends on an NSP1-NSP2 complex. Plant cell. 2009, 21 (2): 367-10.1105/tpc.109.210214.
Article
PubMed Central
CAS
Google Scholar
Joshi A, De Smet R, Marchal K, Van de Peer Y, Michoel T: Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics. 2009, 25 (4): 490-496. 10.1093/bioinformatics/btn658.
Article
CAS
PubMed
Google Scholar
Oldroyd GE, Downie JA: Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol. 2008, 59: 519-546. 10.1146/annurev.arplant.59.032607.092839.
Article
CAS
PubMed
Google Scholar
Sandal NN, Bojsen K, Marcker KA: A small family of nodule specific genes from soybean. Nucleic Acids Res. 1987, 15: 1507-1519. 10.1093/nar/15.4.1507.
Article
PubMed Central
CAS
PubMed
Google Scholar