Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics. 2010, 95 (6): 315-327. 10.1016/j.ygeno.2010.03.001.
Article
PubMed Central
PubMed
CAS
Google Scholar
Nagarajan N, Pop M: Parametric complexity of sequence assembly: theory and applications to next generation sequencing. J Comput Biol. 2009, 16 (7): 897-908. 10.1089/cmb.2009.0005.
Article
PubMed
CAS
Google Scholar
Nagarajan N, Pop M: Sequence assembly demystified. Nat Rev Genet. 2013, 14 (3): 157-167. 10.1038/nrg3367.
Article
PubMed
CAS
Google Scholar
Myers EW: Toward simplifying and accurately formulating fragment assembly. J Comput Biol. 1995, 2 (2): 275-290. 10.1089/cmb.1995.2.275.
Article
PubMed
CAS
Google Scholar
Bradnam K, Fass J, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman J, Chapuis G, Chikhi R, Chitsaz H, Chou W-C, Corbeil J, Del Fabbro C, Docking T, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca N, Ganapathy G, Gibbs R, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt J, Ho I: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience. 2013, 2 (1): 10-10.1186/2047-217X-2-10.
Article
PubMed Central
PubMed
Google Scholar
Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT, Fonseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S, et al: Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 2011, 21 (12): 2224-2241. 10.1101/gr.126599.111.
Article
PubMed Central
PubMed
CAS
Google Scholar
Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz MC, Delcher AL, Roberts M: GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res. 2012, 22 (3): 557-567. 10.1101/gr.131383.111.
Article
PubMed Central
PubMed
CAS
Google Scholar
Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL: GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics. 2013, 29 (14): 1718-1725. 10.1093/bioinformatics/btt273.
Article
PubMed Central
PubMed
CAS
Google Scholar
Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-assembly. Genome Biol. 2008, 9 (3): R55-R55. 10.1186/gb-2008-9-3-r55.
Article
PubMed Central
PubMed
Google Scholar
Clark SC, Egan R, Frazier PI, Wang Z: ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics. 2013, 29 (4): 435-443. 10.1093/bioinformatics/bts723.
Article
PubMed
CAS
Google Scholar
Rahman A, Pachter L: CGAL: computing genome assembly likelihoods. Genome Biol. 2013, 14 (1): R8-10.1186/gb-2013-14-1-r8.
Article
PubMed Central
PubMed
Google Scholar
Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD: REAPR: a universal tool for genome assembly evaluation. Genome Biol. 2013, 14 (5): R47-10.1186/gb-2013-14-5-r47.
Article
PubMed Central
PubMed
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013, 29 (8): 1072-1075. 10.1093/bioinformatics/btt086.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD, Koren S, Pop M: De novo likelihood-based measures for assembly validation. BMC Res Notes. 2013, 6 (1): 334-10.1186/1756-0500-6-334.
Article
PubMed Central
PubMed
Google Scholar
Vezzi F, Narzisi G, Mishra B: Reevaluating assembly evaluations with feature response curves: GAGE and assemblathons. PLoS One. 2012, 7 (12): e52210-10.1371/journal.pone.0052210.
Article
PubMed Central
PubMed
CAS
Google Scholar
Howison M, Zapata F, Dunn CW: Toward a statistically explicit understanding of de novo sequence assembly. Bioinformatics. 2013, 29 (23): 2959-2963. 10.1093/bioinformatics/btt525.
Article
PubMed
CAS
Google Scholar
Tritt A, Eisen JA, Facciotti MT, Darling AE: An integrated pipeline for de novo assembly of microbial genomes. PLoS One. 2012, 7 (9): e42304-10.1371/journal.pone.0042304.
Article
PubMed Central
PubMed
CAS
Google Scholar
Coil D, Jospin G, Darling AE: A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. arXiv preprint arXiv:1401.5130 2014
Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, Jayaraman P, Nelakuditi V, Humphrey JC, Sammons SA, Govil D, Mair RD, Tatti KM, Tondella ML, Harcourt BH, Mayer LW, Jordan IK: A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics. 2010, 26 (15): 1819-1826. 10.1093/bioinformatics/btq284.
Article
PubMed Central
PubMed
CAS
Google Scholar
Velvet Optimizer: http://bioinformatics.net.au/software.velvetoptimiser.shtml,
Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res. 2008, 18 (5): 821-829. 10.1101/gr.074492.107.
Article
PubMed Central
PubMed
CAS
Google Scholar
Narzisi G, Mishra B: Comparing de novo genome assembly: the long and short of it. PLoS One. 2011, 6 (4): 17-17.
Article
Google Scholar
Medvedev P, Brudno M: Maximum likelihood genome assembly. J Comput Biol. 2009, 16 (8): 1101-1116. 10.1089/cmb.2009.0047.
Article
PubMed Central
PubMed
CAS
Google Scholar
Laserson J, Jojic V, Koller D: Genovo: de novo assembly for metagenomes. J Comp Biol J Comp Mol Cell Biol. 2011, 18 (3): 429-443. 10.1089/cmb.2010.0244.
Article
CAS
Google Scholar
Hayati A, Sato K, Sakakibara Y: An extended genovo metagenomic assembler by incorporating paired-end information. PeerJ. 2013, 1: e196-
Article
Google Scholar
Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M: MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol. 2013, 14 (1): R2-10.1186/gb-2013-14-1-r2.
Article
PubMed Central
PubMed
Google Scholar
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al: Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008, 456 (7218): 53-59. 10.1038/nature07517.
Article
PubMed Central
PubMed
CAS
Google Scholar
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005, 437 (7057): 376-380.
PubMed Central
PubMed
CAS
Google Scholar
Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, et al: An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011, 475 (7356): 348-352. 10.1038/nature10242.
Article
PubMed
CAS
Google Scholar
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al: Real-time DNA sequencing from single polymerase molecules. Science. 2009, 323 (5910): 133-138. 10.1126/science.1162986.
Article
PubMed
CAS
Google Scholar
Goodstadt L: Ruffus: a lightweight python library for computational pipelines. Bioinformatics. 2010, 26 (21): 2778-2779. 10.1093/bioinformatics/btq524.
Article
PubMed
CAS
Google Scholar
PyInstaller: http://www.pyinstaller.org/,
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res. 2009, 19 (6): 1117-1123. 10.1101/gr.089532.108.
Article
PubMed Central
PubMed
CAS
Google Scholar
Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics. 2008, 24 (24): 2818-2824. 10.1093/bioinformatics/btn548.
Article
PubMed Central
PubMed
CAS
Google Scholar
Peng Y, Leung HC, Yiu SM, Chin FY: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012, 28 (11): 1420-1428. 10.1093/bioinformatics/bts174.
Article
PubMed
CAS
Google Scholar
Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The MaSuRCA genome assembler. Bioinformatics. 2013, 29 (21): 2669-2677. 10.1093/bioinformatics/btt476.
Article
PubMed Central
PubMed
CAS
Google Scholar
Namiki T, Hachiya T, Tanaka H, Sakakibara Y: MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012, 40 (20): e155-10.1093/nar/gks678.
Article
PubMed Central
PubMed
CAS
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004, 14 (6): 1147-1159. 10.1101/gr.1917404.
Article
PubMed Central
PubMed
CAS
Google Scholar
Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010, 17 (11): 1519-1533. 10.1089/cmb.2009.0238.
Article
PubMed Central
PubMed
CAS
Google Scholar
Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J: Ray meta: scalable de novo metagenome assembly and profiling. Genome Biol. 2012, 13 (12): R122-10.1186/gb-2012-13-12-r122.
Article
PubMed Central
PubMed
Google Scholar
Simpson JT, Durbin R: Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 2012, 22 (3): 549-556. 10.1101/gr.126953.111.
Article
PubMed Central
PubMed
CAS
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012, 1 (1): 18-10.1186/2047-217X-1-18.
Article
PubMed Central
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012, 19 (5): 455-477. 10.1089/cmb.2012.0021.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ye C, Ma ZS, Cannon CH, Pop M, Yu DW: Exploiting sparseness in de novo genome assembly. BMC Bioinforma. 2012, 13 (Suppl 6): S1-10.1186/1471-2105-13-S6-S1.
Article
Google Scholar
Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP, Evers DJ, Pevzner PA, Lasken RS: Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol. 2011, 29 (10): 915-921. 10.1038/nbt.1966.
Article
PubMed Central
PubMed
CAS
Google Scholar
Chikhi R, Medvedev P: Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014, 30 (1): 31-37. 10.1093/bioinformatics/btt310.
Article
PubMed
CAS
Google Scholar
Garrison E, Marth G: Haplotype-based variant detection from short-read sequencing. 2012, arXiv preprint arXiv:1207.3907
Google Scholar
Deloger M, El Karoui M, Petit MA: A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol. 2009, 191 (1): 91-99. 10.1128/JB.01202-08.
Article
PubMed Central
PubMed
CAS
Google Scholar
NCBI RefSeq: ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz
Seemann T: Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014, btu153:
Google Scholar
Wood D, Salzberg S: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15 (3): R46-10.1186/gb-2014-15-3-r46.
Article
PubMed Central
PubMed
Google Scholar
Parks DH, MacDonald NJ, Beiko RG: Classifying short genomic fragments from novel lineages using composition and homology. BMC Bioinforma. 2011, 12 (1): 328-328. 10.1186/1471-2105-12-328.
Article
CAS
Google Scholar
Darling AE, Jospin G, Lowe E, Matsen FAIV, Bik HM, Eisen JA: PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014, 2: e243-
Article
PubMed Central
PubMed
Google Scholar
Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol. 2011, 7 (10): e1002195-e1002195. 10.1371/journal.pcbi.1002195.
Article
PubMed Central
PubMed
CAS
Google Scholar
Brady A, Salzberg SL: Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated markov models. Nat Methods. 2009, 6 (9): 673-676. 10.1038/nmeth.1358.
Article
PubMed Central
PubMed
CAS
Google Scholar
FastQC: A quality control tool for high throughput sequence data: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/,
Ondov BD, Bergman NH, Phillippy AM: Interactive metagenomic visualization in a web browser. BMC Bioinforma. 2011, 12 (1): 385-385. 10.1186/1471-2105-12-385.
Article
Google Scholar
Command-line tools for processing biological sequencing data: https://code.google.com/p/ea-utils/,
Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S: Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013, 45 (10): 1176-1182. 10.1038/ng.2744.
Article
PubMed Central
PubMed
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410. 10.1016/S0022-2836(05)80360-2.
Article
PubMed
CAS
Google Scholar
Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A: GAM-NGS: genomic assemblies merger for next generation sequencing. BMC Bioinforma. 2013, 14 (Suppl 7): S6-10.1186/1471-2105-14-S7-S6.
Article
Google Scholar
Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM: Graph accordance of next-generation sequence assemblies. Bioinformatics. 2012, 28 (1): 13-16. 10.1093/bioinformatics/btr588.
Article
PubMed Central
PubMed
CAS
Google Scholar
Sommer DD, Delcher AL, Salzberg SL, Pop M: Minimus: a fast, lightweight genome assembler. BMC Bioinforma. 2007, 8 (1): 64-64. 10.1186/1471-2105-8-64.
Article
Google Scholar
Perl Artistic License: http://dev.perl.org/licenses/artistic.html,