Eizirik DL, Mandrup-Poulsen T: A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001, 44: 2115–2133. 10.1007/s001250100021
Article
CAS
PubMed
Google Scholar
Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL: Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005, 54(Suppl 2):S97–107.
Article
CAS
PubMed
Google Scholar
Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL: Identification of novel cytokine-induced genes in pancreatic β-cells by high-density oligonucleotide arrays. Diabetes 2001, 50: 909–920.
Article
CAS
PubMed
Google Scholar
Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Orntoft T, Eizirik DL: A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells. J Biol Chem 2001, 276: 48879–48886. 10.1074/jbc.M108658200
Article
CAS
PubMed
Google Scholar
Rasschaert J, Liu D, Kutlu B, Cardozo AK, Kruhoffer M, ORntoft TF, Eizirik DL: Global profiling of double stranded RNA- and IFN-γ-induced genes in rat pancreatic beta cells. Diabetologia 2003, 46: 1641–1657. 10.1007/s00125-003-1245-y
Article
CAS
PubMed
Google Scholar
Kutlu B, Cardozo AK, Darville MI, Kruhoffer M, Magnusson N, Orntoft T, Eizirik DL: Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 2003, 52: 2701–2719.
Article
CAS
PubMed
Google Scholar
Ylipaasto P, Kutlu B, Rasilainen S, Rasschaert J, Salmela K, Teerijoki H, Korsgren O, Lahesmaa R, Hovi T, Eizirik DL, Otonkoski T, Roivainen M: Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 2005, 48: 1510–1522. 10.1007/s00125-005-1839-7
Article
CAS
PubMed
Google Scholar
Hayden MS, Ghosh S: Signaling to NF-κB. Genes Dev 2004, 18: 2195–224. 10.1101/gad.1228704
Article
CAS
PubMed
Google Scholar
Ortis F, Cardozo AK, Crispim D, Storling J, Mandrup-Poulsen T, Eizirik DL: Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-κB activation. Mol Endocrinol 2006, 20: 1867–1879. 10.1210/me.2005-0268
Article
CAS
PubMed
Google Scholar
Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL: Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents β-cell apoptosis. Diabetes 2001, 50: 2219–2224.
Article
CAS
PubMed
Google Scholar
Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D: Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 2006, 103: 5072–5077. 10.1073/pnas.0508166103
Article
PubMed Central
CAS
PubMed
Google Scholar
Darville MI, Eizirik DL: Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-κB and C/EBP. Diabetes 2001, 50: 1741–1748.
Article
CAS
PubMed
Google Scholar
Darville MI, Eizirik DL: Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 1998, 41: 1101–1108. 10.1007/s001250051036
Article
CAS
PubMed
Google Scholar
Darville MI, Ho YS, Eizirik DL: NF-κB is required for cytokine-induced manganese superoxide dismutase expression in insulin-producing cells. Endocrinology 2000, 141: 153–162. 10.1210/en.141.1.153
CAS
PubMed
Google Scholar
Kutlu B, Darville MI, Cardozo AK, Eizirik DL: Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells. Diabetes 2003, 52: 348–355.
Article
CAS
PubMed
Google Scholar
Davidson EH, McClay DR, Hood L: Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci USA 2003, 100: 1475–1480. 10.1073/pnas.0437746100
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonze D, Pinloche S, Gascuel O, van Helden J: Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs. Bioinformatics 2005, 21: 3490–3500. 10.1093/bioinformatics/bti558
Article
CAS
PubMed
Google Scholar
Blais A, Dynlacht BD: Constructing transcriptional regulatory networks. Genes Dev 2005, 19: 1499–1511. 10.1101/gad.1325605
Article
CAS
PubMed
Google Scholar
Marchal K, De Keersmaecker S, Monsieurs P, van Boxel N, Lemmens K, Thijs G, Vanderleyden J, De Moor B: In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection. Genome Biol 2004, 5: R9. 10.1186/gb-2004-5-2-r9
Article
PubMed Central
PubMed
Google Scholar
Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z: Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 2005, 23: 137–144. 10.1038/nbt1053
Article
CAS
PubMed
Google Scholar
Wasserman WW, Sandelin A: Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004, 5: 276–287. 10.1038/nrg1315
Article
CAS
PubMed
Google Scholar
Holloway DT, Kon M, DeLisi C: Integrating genomic data to predict transcription factor binding. Genome Inform 2005, 16: 83–94.
CAS
PubMed
Google Scholar
Dermitzakis ET, Clark AG: Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 2002, 19: 1114–1121.
Article
CAS
PubMed
Google Scholar
Grouven U, Bergel F, Schultz A: Implementation of linear and quadratic discriminant analysis incorporating costs of misclassification. Comput Methods Programs Biomed 1996, 49: 55–60. 10.1016/0169-2607(95)01705-4
Article
CAS
PubMed
Google Scholar
Zhang MQ: Discriminant analysis and its application in DNA sequence motif recognition. Brief Bioinform 2000, 1: 331–342. 10.1093/bib/1.4.331
Article
CAS
PubMed
Google Scholar
Defrance M, Touzet H: Predicting transcription factor binding sites using local over-representation and comparative genomics. BMC Bioinformatics 2006, 7: 396. 10.1186/1471-2105-7-396
Article
PubMed Central
PubMed
Google Scholar
Stormo GD: DNA binding sites: representation and discovery. Bioinformatics 2000, 16: 16–23. 10.1093/bioinformatics/16.1.16
Article
CAS
PubMed
Google Scholar
Bulyk ML: Computational prediction of transcription-factor binding site locations. Genome Biol 2003, 5: 201. 10.1186/gb-2003-5-1-201
Article
PubMed Central
PubMed
Google Scholar
Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000, 28: 316–319. 10.1093/nar/28.1.316
Article
PubMed Central
CAS
PubMed
Google Scholar
Takahata N, Satta Y: Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci USA 1997, 94: 4811–4815. 10.1073/pnas.94.9.4811
Article
PubMed Central
CAS
PubMed
Google Scholar
Springer MS, Murphy WJ, Eizirik E, O'Brien SJ: Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 2003, 100: 1056–1061. 10.1073/pnas.0334222100
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu Z, Pilpel Y, Church GM: Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. J Mol Biol 2002, 318: 71–81. 10.1016/S0022-2836(02)00026-8
Article
CAS
PubMed
Google Scholar
Holstege FC, Clevers H: Transcription factor target practice. Cell 2006, 124: 21–23. 10.1016/j.cell.2005.12.026
Article
CAS
PubMed
Google Scholar
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420: 520–562. 10.1038/nature01262
Article
CAS
PubMed
Google Scholar
Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y: Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 2003, 13: 773–780. 10.1101/gr.947203
Article
PubMed Central
CAS
PubMed
Google Scholar
Kutlu B, Naamane N, Berthou L, Eizirik DL: New approaches for in silico identification of cytokine-modified beta cell gene networks. Ann N Y Acad Sci 2004, 1037: 41–58. 10.1196/annals.1337.007
Article
CAS
PubMed
Google Scholar
Betts JC, Cheshire JK, Akira S, Kishimoto T, Woo P: The role of NF-κB and NF-IL6 transactivating factors in the synergistic activation of human serum amyloid A gene expression by interleukin-1 and interleukin-6. J Biol Chem 1993, 268: 25624–25631.
CAS
PubMed
Google Scholar
Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 1993, 90: 10193–10197. 10.1073/pnas.90.21.10193
Article
PubMed Central
CAS
PubMed
Google Scholar
Shelest E, Kel AE, Goessling E, Wingender E: Prediction of potential C/EBP/NF-κB composite elements using matrix-based search methods. In Silico Biol 2003, 3: 71–79.
CAS
PubMed
Google Scholar
Qiu P: Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem Biophys Res Commun 2003, 309: 495–501. 10.1016/j.bbrc.2003.08.052
Article
CAS
PubMed
Google Scholar
Pahl HL: Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999, 18: 6853–6866. 10.1038/sj.onc.1203239
Article
CAS
PubMed
Google Scholar
Rel/NF-κB Transcription Factors[http://people.bu.edu/gilmore/nf-kb/target/]
Duyao MP, Buckler AJ, Sonenshein GE: Interaction of an NF-κB-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 1990, 87: 4727–4731. 10.1073/pnas.87.12.4727
Article
PubMed Central
CAS
PubMed
Google Scholar
Wasserman WW, Krivan W: In silico identification of metazoan transcriptional regulatory regions. Naturwissenschaften 2003, 90: 156–166.
CAS
PubMed
Google Scholar
Radhakrishnan SK, Kamalakaran S: Pro-apoptotic role of NF-κB: Implications for cancer therapy. Biochim Biophys Acta 2006, 1766: 53–62.
CAS
PubMed
Google Scholar
NF-κB target genes[http://bioinfo.lifl.fr/NF-KB/]
Lee KW, Lee Y, Kwon HJ, Kim DS: Sp1-associated activation of macrophage inflammatory protein-2 promoter by CpG-oligodeoxynucleotide and lipopolysaccharide. Cell Mol Life Sci 2005, 62: 188–198. 10.1007/s00018-004-4399-y
Article
CAS
PubMed
Google Scholar
Ohmori Y, Hamilton TA: Cooperative interaction between interferon (IFN) stimulus response element and κB sequence motifs controls IFN γ- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J Biol Chem 1993, 268: 6677–6688.
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409: 860–921. 10.1038/35057062
Article
CAS
PubMed
Google Scholar
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, et al.: The sequence of the human genome. Science 2001, 291: 1304–51. 10.1126/science.1058040
Article
CAS
PubMed
Google Scholar
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera , Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, et al.: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 2004, 428: 493–521. 10.1038/nature02426
Article
CAS
PubMed
Google Scholar
Gysemans CA, Ladriere L, Callewaert H, Rasschaert J, Flamez D, Levy DE, Matthys P, Eizirik DL, Mathieu C: Disruption of the γ-interferon signaling pathway at the level of signal transducer and activator of transcription-1 prevents immune destruction of beta-cells. Diabetes 2005, 54: 2396–2403.
Article
CAS
PubMed
Google Scholar
ENSEMBL[http://www.ensembl.org]
Hertz GZ, Stormo GD: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 1999, 15: 563–577. 10.1093/bioinformatics/15.7.563
Article
CAS
PubMed
Google Scholar
Huberty C: Applied Discriminant Analysis. New York: John Wiley & Sons; 1994.
Google Scholar
Levner I: Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005, 6: 68. 10.1186/1471-2105-6-68
Article
PubMed Central
PubMed
Google Scholar
Lorena AC, de Carvalho AC: Evaluation of noise reduction techniques in the splice junction recognition problem. Genetics and Molecular Biology 2004, 27: 665–672. 10.1590/S1415-47572004000400031
Article
CAS
Google Scholar
van Helden J: Regulatory sequence analysis tools. Nucleic Acids Res 2003, 31: 3593–3596. 10.1093/nar/gkg567
Article
PubMed Central
CAS
PubMed
Google Scholar
Beta-Cell Gene Expression Bank[http://t1dbase.org/cgi-bin/enter_bcgb.cgi]
Statistical package R[http://cran.r-project.org]
Al-Shahrour F, Diaz-Uriarte R, Dopazo J: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 2004, 20: 578–580. 10.1093/bioinformatics/btg455
Article
CAS
PubMed
Google Scholar
FatiGO[http://fatigo.bioinfo.cipf.es]
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995, 57: 289–300.
Google Scholar