Pattison RJ, Amtmann A. N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci. 2009; 14(2):92–9.
Article
CAS
PubMed
Google Scholar
Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006; 126(5):855–67.
Article
CAS
PubMed
Google Scholar
Brooks SA. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins. Expert Rev Proteomics. 2006; 3(3):345–59.
Article
CAS
PubMed
Google Scholar
IUPAC Gold Book- Glycans. http://goldbook.iupac.org/G02645.html.
von der Lieth CW, Bohne-Lang A, Lohmann KK, Frank M. Bioinformatics for glycomics: status, methods, requirements and perspectives. Brief Bioinform. 2004; 5(2):164–78.
Article
CAS
PubMed
Google Scholar
Krambeck FJ, Bennun SV, Narang S, Choi S, Yarema KJ, Betenbaugh MJ. A mathematical model to derive N-glycan structures and cellular enzymes’ activities from mass spectrometric data. Glycobiology. 2009; 19(11):1163–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim PJ, Lee DY, Jeong H. Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS One. 2009; 4(10):7317.
Article
Google Scholar
Sell S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum Pathol. 1990; 21(10):1003–19.
Article
CAS
PubMed
Google Scholar
Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol. 2001; 491:369–402.
Article
CAS
PubMed
Google Scholar
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005; 5(7):526–42.
Article
CAS
PubMed
Google Scholar
Tong L, Baskaran G, Jones MB, Rhee JK, Yarema KJ. Glycosylation changes as markers for the diagnosis and treatment of human disease. Biotechnol Genet Eng Rev. 2003; 20(1):199–244.
Article
CAS
PubMed
Google Scholar
Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999; 1473(1):21–34.
Article
CAS
PubMed
Google Scholar
Tajiri M, Ohyama C, Wada Y. Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: A glycopeptide approach. Glycobiology. 2008; 18(1):2–8.
Article
CAS
PubMed
Google Scholar
Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW. Glycoproteomics for prostate cancer detection: Changes in serum PSA glycosylation patterns. J Proteome Res. 2009; 8(2):613–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R. Advancing glycomics: Implementation strategies at the consortium for functional glycomics. Glycobiology. 2006; 16(5):82–90.
Article
Google Scholar
Ranzinger R, Herget S, Lieth CWVD, Frank M. GlycomeDB-A unified database for carbohydrate structures. Nucleic Acids Res. 2011; 39 (Database issue):373–6.
Article
Google Scholar
Zaia J. Mass spectrometry and the emerging field of glycomics. Chem Biol. 2008; 15(9):881–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novotny MV, Alley WR. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol. 2013; 17(5):832–40.
Article
CAS
PubMed
Google Scholar
Suga A, Yamanishi Y, Hashimoto K, Goto S, Kanehisa M. An improved scoring scheme for predicting glycan structures from gene expression data. Genome Inform. 2007; 18:237–46.
PubMed
Google Scholar
Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M. KEGG as a glycome informatics resource. Glycobiology. 2006; 16(5):63–70.
Article
Google Scholar
Kawano S, Hashimoto K, Miyama T, Goto S, Kanehisa M. Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics. 2005; 21(21):3976–82.
Article
CAS
PubMed
Google Scholar
Umana P, Bailey JE. A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng. 1997; 55(6):890–908.
Article
CAS
PubMed
Google Scholar
Krambeck FJ, Betenbaugh MJ. A mathematical model of N-linked glycosylation. Biotechnol Bioeng. 2005; 92(6):711–28.
Article
CAS
PubMed
Google Scholar
Bennun SV, Yarema KJ, Betenbaugh MJ, Krambeck FJ. Integration of the transcriptome and glycome for identification of glycan cell signatures. PLoS Comput Biol. 2013; 9(1):1002813.
Article
Google Scholar
Puri A, Neelamegham S. Understanding glycomechanics using mathematical modeling: A review of current approaches to simulate cellular glycosylation reaction networks. Ann Biomed Eng. 2012; 40(4):816–27.
Article
PubMed
Google Scholar
Liu G, Marathe DD, Matta KL, Neelamegham S. Systems-level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. Bioinformatics. 2008; 24(23):2740–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Neelamegham S. A computational framework for the automated construction of glycosylation reaction networks. PLoS One. 2014; 9(6):100939.
Article
Google Scholar
Yip B, Chen S, Mulder H, Hoppener J, Schachter H. Organization of the human β-a,2-N-acetylglucosaminyltransferase I gene (MGAT1), which controls complex and hybrid N-glycan synthesis. Biochem J. 1997; 321:465–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan J, D’agostaro G, Bendiak B, Reck F, Sarkar M, Squire J, Leong P, Schachter H. The human UDP-N-acetylglucosamine: α-6-D-mannoside- β-1, 2-N-acetylglucosaminyltransferase II gene (MGAT2). Eur J Biochem. 1995; 231:317–28.
Article
CAS
PubMed
Google Scholar
Yoshida A, Minowa M, Takamatsu S, Hara T, Oguri S, Ikenaga H, Takeuchi M. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: α1,3-D-mannoside β1, 4-N-acetylglycosaminyltransferase. Glycobiology. 1999; 9(3):303–10.
Article
CAS
PubMed
Google Scholar
Yoshida A, Minowa M, Takamatsu S, Hara T, Ikenaga H, Takeuchi M. A novel second isoenzyme of the human UDP-N-acetylglucosamine: α1, 3-D-mannoside β1, 4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconjugate J. 1998; 15:1115–23.
Article
CAS
Google Scholar
Larsen R, Ernst L, Nair R, Lowe J. Molecular cloning, sequence, and expression of a human GDP-L-fucose: β-D-galactoside 2- α-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Nat Acad Sci USA. 1990; 87:6674–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amado M, Almeida R, Carneiro F, Levery S, Holmes E, Nomoto M, Hollingsworth M, Hassan H, Schwientek T, Nielsen P, Bennett E, Clausen H. A family of human β3-galactosyltransferases. J Biol Chem. 1998; 273(21):12770–8.
Article
CAS
PubMed
Google Scholar
Ju T, Brewer K, D’Souza A, Cummings R, Canfield W. Closing and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem. 2002; 277(1):178–86.
Article
CAS
PubMed
Google Scholar
Ihara Y, Nishikawa A, Tohma T, Soejima H, Niikawa N, Taniguchi N. cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J Biochem. 1993; 113:692–8.
CAS
PubMed
Google Scholar
Oulmouden A, Wierinckx A, Petit J, Costache M, Palcic M, Mollicone R, Oriol R, Julien R. Molecular cloning and expression of a bovine α(1,3)-fucosyltransferase gene homologous to a putative ancestor gene of the human FUT3-FUT5-FUT6 cluster. J Biol Chem. 1997; 272(12):8764–73.
Article
CAS
PubMed
Google Scholar
Shiraishi N, Natsume A, Togayachi A, Endo T, Akashima T, Yamada Y, Imai N, Nakagawa S, Koizumi S, Sekine S, Narimatsu H, Sasaki K. Identification and characterization of three novel β1, 3-N-acetylglucosaminyltransferases structurally related to the β-1, 3-galactosyltransferase family. J Biol Chem. 2001; 276(5):3498–507.
Article
CAS
PubMed
Google Scholar
Inaba N, Hiruma T, Togayachi A, Iwasaki H, Wang X, Furukawa Y, Sumi R, Kuso T, Fujimura K, Iwai T, Gotoh M, Nakamura M, Narimatsu H. A novel I-branching β-1, 6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood. 2003; 101(7):2870–6.
Article
CAS
PubMed
Google Scholar
Inamori K, Endo T, Ide Y, Fujii S, Gu J, Honke K, Taniguchi N. Molecular cloning and characterization of human GnT-IX, a novel β1, 6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J Biol Chem. 2003; 278(44):43102–9.
Article
CAS
PubMed
Google Scholar
Almeida R, Amado M, David L, Levery S, Holmes E, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E, Clausen H. A family of human β4-galactosyltransferases. J Biol Chem. 1997; 272(51):31979–91.
Article
CAS
PubMed
Google Scholar
Voynow J, Kaiser R, Scanlin T, Glick M. Purification and characterization of GDP-L-fucose-N-acetyl β-D-glycosaminide α1→6 fucosyltransferase from cultured human skin fibroblasts. J Biol Chem. 1991; 266(32):21575–7.
Google Scholar
Nakayama F, Nishihara S, Iwasaki H, Kudo T, Okubo R, Kaneko M, Nakamura M, Karube M, Sasaki K, Narimatsu H. CD15 expression in mature granulocytes is determined by α1, 3-fucosyltransferase IX, but in promyelocytes and monocytes by α1, 3-fucosyltransferase IV. J Biol Chem. 2001; 276(19):16100–6.
Article
CAS
PubMed
Google Scholar
Bai X, Zhou D, Brown J, Crawford B, Hennet T, Esko J. Biosynthesis of the linkage region of glycosaminoglycans. J Biol Chem. 2001; 276(51):48189–95.
CAS
PubMed
Google Scholar
Takashima S, Tsuji S, Tsujimoto M. Characterization of the second type of human β-galactoside α2,6-sialyltransferase (ST6Gal II), which sialylates Gal β1, 4GlcNAc structures on oligosaccharides preferentially. J Biol Chem. 2002; 277(48):45719–28.
Article
CAS
PubMed
Google Scholar
Kitagawa H, Paulson J. Cloning of a novel α2, 3-sialytransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J Biol Chem. 1994; 269(2):1394–401.
CAS
PubMed
Google Scholar
Kitagawa H, Paulson JC. Differential expression of five sialyltransferase genes in human tissues. J Biol Chem. 1994; 269(27):17872–8.
CAS
PubMed
Google Scholar
del Val IJ, Nagy JM, Kontoravdi C. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog. 2011; 27(6):1730–43.
Article
Google Scholar
Hossler P, Mulukutla B, Hu W. Systems analysis of N-glycan processing in mammalian cells. PLoS One. 2007; 2(8):713.
Article
Google Scholar