Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, Miguel L, Lecourtois M, Gil C, Martinez A, Perez DI. Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem. 2014;57(6):2755–72. doi:10.1021/jm500065f.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688–700. doi:10.1056/NEJM200105313442207.
Article
CAS
PubMed
Google Scholar
Yasri A, Hartsough D. Toward an optimal procedure for variable selection and QSAR model building. J Chem Inf Comput Sci. 2001;41(5):1218–27.
Article
CAS
PubMed
Google Scholar
Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):603–15. doi:10.1038/nrneurol.2011.150.
Article
CAS
PubMed
Google Scholar
Fecto F, Siddique T. Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci. 2011;45(3):663–75. doi:10.1007/s12031-011-9637-9.
Article
PubMed
Google Scholar
Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55. doi:10.1016/S0140-6736(10)61156-7.
Article
CAS
PubMed
Google Scholar
Cohen B, Caroscio J. Eye movements in amyotrophic lateral sclerosis. J Neural Transm Suppl. 1983;19:305–15.
CAS
PubMed
Google Scholar
Simpson CL, Al-Chalabi A. Amyotrophic lateral sclerosis as a complex genetic disease. Biochim Biophys Acta. 2006;1762(11–12):973–85. doi:10.1016/j.bbadis.2006.08.001.
Article
CAS
PubMed
Google Scholar
Strong MJ, Kesavapany S, Pant HC. The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol. 2005;64(8):649–64.
Article
CAS
PubMed
Google Scholar
Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11. doi:10.1126/science.1165942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7(9):710–23. doi:10.1038/nrn1971.
Article
CAS
PubMed
Google Scholar
Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev. 2011;31(6):924–54.
Article
CAS
PubMed
Google Scholar
Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, WüRL PU, Eismann T, Stöter M. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Oncol Res Treat. 2005;28(10):508–14.
Article
CAS
Google Scholar
Cheong JK, Virshup DM. Casein kinase 1: complexity in the family. Int J Biochem Cell Biol. 2011;43(4):465–9.
Article
CAS
PubMed
Google Scholar
Price MA. CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 2006;20(4):399–410.
Article
CAS
PubMed
Google Scholar
Eide EJ, Virshup DM. Casein kinase I: another cog in the circadian clockworks. Chronobiol Int. 2001;18(3):389–98.
Article
CAS
PubMed
Google Scholar
Etchegaray J-P, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Elizabeth AY, Reppert SM. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol. 2009;29(14):3853–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer. 2014;13(1):1.
Article
Google Scholar
Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H, Hasegawa M. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun. 2009;382(2):405–9.
Article
CAS
PubMed
Google Scholar
Nonaka T, Masai H, Hasegawa M. Phosphorylation of TDP-43 by casein kinase 1 delta facilitates mislocalization and intracellular aggregate formation of TDP-43. Alzheimers Dement. 2014;10(4):P790.
Article
Google Scholar
Greer YE, Gao B, Yang Y, Rubin JS. Lack of casein kinase 1 delta induces DNA damage, inhibition of mTORC1 signaling and nucleophagy. Cancer Res. 2014;74(19 Supplement):1335.
Article
Google Scholar
Li J, Gramatica P. The importance of molecular structures, endpoints’ values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Mol Divers. 2010;14(4):687–96. doi:10.1007/s11030-009-9212-2.
Article
CAS
PubMed
Google Scholar
Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29(6–7):476–88. doi:10.1002/minf.201000061.
Article
CAS
Google Scholar
Van Damme S, Bultinck P. A new computer program for QSAR-analysis: ARTE-QSAR. J Comput Chem. 2007;28(11):1924–8. doi:10.1002/jcc.20664.
Article
PubMed
Google Scholar
Goyal S, Grover S, Dhanjal JK, Tyagi C, Goyal M, Grover A. Group-based QSAR and molecular dynamics mechanistic analysis revealing the mode of action of novel piperidinone derived protein–protein inhibitors of p 53–MDM2. J Mol Graph Model. 2014;51:64–72.
Article
CAS
PubMed
Google Scholar
Goyal M, Dhanjal JK, Goyal S, Tyagi C, Hamid R, Grover A. Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. Biomed Res Int. 2014;2014:979606. doi:10.1155/2014/979606.
Article
PubMed
PubMed Central
Google Scholar
Gupta A, Jain R, Wahi D, Goyal S, Jamal S, Grover A. Abrogation of AuroraA-TPX2 by novel natural inhibitors: molecular dynamics-based mechanistic analysis. J Recept Signal Transduction. 2015:1–8.
Patel K, Tyagi C, Goyal S, Jamal S, Wahi D, Jain R, Bharadvaja N, Grover A. Identification of chebulinic acid as potent natural inhibitor of M. tuberculosis DNA gyrase and molecular insights into its binding mode of action. Comput Biol Chem. 2015;59:37–47.
Article
CAS
PubMed
Google Scholar
Vats C, Dhanjal JK, Goyal S, Gupta A, Bharadvaja N, Grover A. Mechanistic analysis elucidating the relationship between Lys96 mutation in Mycobacterium tuberculosis pyrazinamidase enzyme and pyrazinamide susceptibility. BMC Genomics. 2015;16 Suppl 2:S14.
Article
PubMed
PubMed Central
Google Scholar
Nagpal N, Goyal S, Wahi D, Jain R, Jamal S, Singh A, Rana P, Grover A. Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease. Gene. 2015;570(1):115–21.
Article
CAS
PubMed
Google Scholar
Goyal S, Jamal S, Shanker A, Grover A. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships. BMC Genomics. 2015;16 Suppl 5:S8.
Article
PubMed
PubMed Central
Google Scholar
Tyagi C, Bathke J, Goyal S, Fischer M, Dahse H-M, Chacko S, Becker K, Grover A. Targeting the intersubunit cavity of plasmodium falciparum glutathione reductase by a novel natural inhibitor: computational and experimental evidence. Int J Biochem Cell Biol. 2015;61:72–80.
Article
CAS
PubMed
Google Scholar
Virupaksha B, Alpana G, Prashant K, Deshpande U, Desideri A. Analysis of naphthoquinone derivatives as topoisomerase I inhibitors using fragment based QSAR. J Cheminformatics. 2013;5(S-1):22.
Article
Google Scholar
Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A. Molecular modelling studies on flavonoid derivatives as dual site inhibitors of human acetyl cholinesterase using 3D-QSAR, pharmacophore and high throughput screening approaches. Med Chem Res. 2014;23(4):2122–32.
Article
CAS
Google Scholar
Singh A, Goyal S, Jamal S, Subramani B, Das M, Admane N, Grover A. Computational identification of novel piperidine derivatives as potential HDM2 inhibitors designed by fragment-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem. 2016;27(3):993–1003.
Article
CAS
Google Scholar
Ajmani S, Agrawal A, Kulkarni SA. A comprehensive structure-activity analysis of protein kinase B-alpha (Akt1) inhibitors. J Mol Graph Model. 2010;28(7):683–94. doi:10.1016/j.jmgm.2010.01.007.
Article
CAS
PubMed
Google Scholar
Tyagi C, Grover S, Dhanjal J, Goyal S, Goyal M, Grover A. Mechanistic insights into mode of action of novel natural cathepsin L inhibitors. BMC Genomics. 2013;14 Suppl 8:S10. doi:10.1186/1471-2164-14-S8-S10.
Article
PubMed
PubMed Central
Google Scholar
Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A. Molecular modelling studies on flavonoid derivatives as dual site inhibitors of human acetyl cholinesterase using 3D-QSAR, pharmacophore and high throughput screening approaches. Med Chem Res. 2013:1–11.
MarwinSketch. 5.12.1 edn. 2013.
VLifeMDS. Molecular design suite. 43rd ed. Pune: VLife Sciences Technologies Pvt. Ltd; 2010.
Google Scholar
Ajmani S, Jadhav K, Kulkarni SA. Group‐based QSAR (G‐QSAR): mitigating interpretation challenges in QSAR. QSAR Comb Sci. 2009;28(1):36–51.
Article
CAS
Google Scholar
Goyal M, Dhanjal JK, Goyal S, Tyagi C, Hamid R, Grover A. Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. BioMed Res Int. 2014.
Xu L, Zhang W-J. Comparison of different methods for variable selection. Anal Chim Acta. 2001;446(1–2):475–81. http://dx.doi.org/10.1016/S0003-2670(01)01271-5.
Article
Google Scholar
Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inf. 2012;31(6–7):473–90. doi:10.1002/minf.201100160.
Article
CAS
Google Scholar
Golbraikh A, Tropsha A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers. 2002;5(4):231–43.
Article
PubMed
Google Scholar
Afantitis A, Melagraki G, Sarimveis H, Igglessi-Markopoulou O, Kollias G. A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem. 2009;44(2):877–84. doi:10.1016/j.ejmech.2008.05.028.
Article
CAS
PubMed
Google Scholar
Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20(4):269–76.
Article
CAS
PubMed
Google Scholar
Schrödinger L. Maestro, version 8.5. New York: Schrödinger; 2008.
Google Scholar
Schrödinger L. SCHRODINGER SUITE 2008. Maestro Version 8. 2008.
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–34.
Article
PubMed
Google Scholar
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–49.
Article
CAS
PubMed
Google Scholar
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9.
Article
CAS
PubMed
Google Scholar
Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. Springer Science & Business Media. 2011.
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128.
Article
Google Scholar