OMS. Women’s health. 2013. http://www.who.int/mediacentre/factsheets/fs334/en/.
Gohlmann H, Talloen W. Gene Expression Studies Using Affymetrix Microarrays: CRC Press.
Illumina. Illumina Genes Expression arrays. 2009. http://www.exiqon.com/microrna-microarray-analysis.
Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, Schaeffer E, Shabbeer S, Cope L. Pre-processing agilent microarray data. BMC Bioinformatics. 2007; 8(1):142.
Article
PubMed
PubMed Central
Google Scholar
Exiqon. Exiqon Genes Expression arrays. 2009. http://www.illumina.com/techniques/microarrays/gene-expression-arrays.html.
Taqman. Taqman Genes Expression arrays. 2009. https://www.thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays.html.
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science. 1995; 270(5235):467.
Article
CAS
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peirson SN, Butler JN. Quantitative polymerase chain reaction. Methods Mol Biol. 2007; 362:349–362. doi:10.1385/1-59745-257-2:349. https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248577601%26doi=10.1385%252f1-59745-257-2%253a349%26partnerID=40%26md5=127a06c5adeda02845b8e941e789c085.
Article
CAS
PubMed
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Statistics for Biology and Health. New York: Springer. p. 397–420.
Kerr MK, Churchill GA. Statistical design and the analysis of gene expression microarray data. Genet Res. 2001; 77(2):123–8.
CAS
PubMed
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002; 18(1):207–8.
Article
CAS
PubMed
Google Scholar
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. Rankprod: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006; 22(22):2825–7.
Article
CAS
PubMed
Google Scholar
Parmigiani G, Garrett ES, Irizarry RA, Zeger SL. The analysis of gene expression data: an overview of methods and software. In: The analysis of gene expression data. New York: Springer: 2003. p. 1–45.
Chapter
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. Biomart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005; 21(16):3439–40.
Article
CAS
PubMed
Google Scholar
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: A case study in Saccharomyces cerevisiae. Nucleic Acids Res. 2012; 40(20):10084–10097. doi:10.1093/nar/gks804. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869014474%26doi=10.1093%252fnar%252fgks804%26partnerID=40%26md5=13854e63e2c2a8e763e978ea58827f86.
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R. Ncbi geo: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 2007; 35(suppl 1):760–5.
Article
Google Scholar
Hansen KD, Irizarry RA, Zhijin W. Removing technical variability in rna-seq data using conditional quantile normalization. Biostatistics. 2012; 13(2):204–16.
Article
PubMed
PubMed Central
Google Scholar
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Proceedings of the 2003 IEEE Bioinformatics Conference, CSB 2003. 2003:523–528. doi:10.1109/CSB.2003.1227396.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20(3):273–97.
Google Scholar
Noble WS. What is a support vector machine?Nat Biotechnol. 2006; 24:1565–7.
Article
CAS
PubMed
Google Scholar
Ho TK. Random decision forests. In: Document Analysis and Recognition, 1995., Proceedings of the Third International Conference On. vol. 1. IEEE: 1995. p. 278–282.
Parry R, Jones W, Stokes T, Phan J, Moffitt R, Fang H, Shi L, Oberthuer A, Fischer M, Tong W, et al.k-nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics J. 2010; 10(4):292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks S. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, mcf-10. Cancer Res. 1990; 50(18):6075–86.
CAS
PubMed
Google Scholar
Soule H, Vazquez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973; 51(5):1409–16.
Article
CAS
PubMed
Google Scholar
Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (hs578t) and the diploid myoepithelial (hs578bst) cell lines. J Natl Cancer Inst. 1977; 58(6):1795–806.
Article
CAS
PubMed
Google Scholar
Kauffmann A, Gentleman R, Huber W. arrayqualitymetrics - a bioconductor package for quality assessment of microarray data. Bioinformatics. 2009; 25(3):415–6.
Article
CAS
PubMed
Google Scholar
Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD. Count-based differential expression analysis of rna sequencing data using r and bioconductor. Nat Protoc. 2013; 8(9):1765–86.
Article
PubMed
Google Scholar
Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2011; 39(SUPPL. 1):D19–D21. doi:10.1093/nar/gkq1019. https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651301328%26doi=10.1093%252fnar%252fgkq1019%26partnerID=40%26md5=11c8aac914655fbbbe87091438ce5715.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):36.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012; 9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, et al.The sequence alignment/map format and samtools. Bioinformatics. 2009; 25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq–A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31(2):166–169. doi:10.1093/bioinformatics/btu638. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928987900%26doi=10.1093%252fbioinformatics%252fbtu638%26partnerID=40%26md5=0b6e8db70a97b8bcfceff9b9c62b869c.
Tarazona S, García F, Ferrer A, Dopazo J, Conesa A. Noiseq: a rna-seq differential expression method robust for sequencing depth biases. EMBnet J. 2012; 17(B):18.
Article
Google Scholar
Dobbin KK, Simon RM. Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genet. 2011; 4(1):31.
Google Scholar
Önskog J, Freyhult E, Landfors M, Rydén P, Hvidsten TR. Classification of microarrays; synergistic effects between normalization, gene selection and machine learning. BMC Bioinformatics. 2011; 12(1):390.
Article
PubMed
PubMed Central
Google Scholar
Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006; 7(1):3.
Article
PubMed
PubMed Central
Google Scholar
Wu W, Xing EP, Myers C, Mian IS, Bissell MJ. Evaluation of normalization methods for cdna microarray data by k-nn classification. BMC Bioinformatics. 2005; 6(1):191.
Article
PubMed
PubMed Central
Google Scholar
Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics. 2008; 9(1):319.
Article
PubMed
PubMed Central
Google Scholar
Statnikov A, Aliferis CF. Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings, vol. 2007. Chicago: American Medical Informatics Association: 2007. p. 686.
Google Scholar
Cho S-B, Won H-H. Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics 2003-Volume 19. Australia: Australian Computer Society, Inc.: 2003. p. 189–98.
Google Scholar
Kim TH, Chang JS, Park KS, Park J, Kim N, Lee JI, Kong ID. Effects of exercise training on circulating levels of dickkpof-1 and secreted frizzled-related protein-1 in breast cancer survivors: A pilot single-blind randomized controlled trial. PLoS One. 2017; 12(2):0171771. doi:10.1371/journal.pone.0171771.
Google Scholar
Kong LY, Xue M, Zhang QC, Su CF. In vivo and in vitro effects of microrna-27a on proliferation, migration and invasion of breast cancer cells through targeting of sfrp1 gene via wnt/beta-catenin signaling pathway. Oncotarget. 2017. doi:10.18632/oncotarget.14662.
Mitrunen K, Jourenkova N, Kataja V, Eskelinen M, Kosma VM, Benhamou S, Vainio H, Uusitupa M, Hirvonen A. Glutathione s-transferase m1, m3, p1, and t1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev. 2001; 10(3):229–36.
CAS
PubMed
Google Scholar
Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Chung HW, Han W, Kim JS, Shin SG, Jang IJ, Yoo KY, Hirvonen A, Kang D. Genetic polymorphisms of sult1a1 and sult1e1 and the risk and survival of breast cancer. Cancer Epidemiol Biomarkers Prev. 2005; 14(5):1090–5. doi:10.1158/1055-9965.EPI-04-0688.
Article
CAS
PubMed
Google Scholar
Xu Y, Liu X, Guo F, Ning Y, Zhi X, Wang X, Chen S, Yin L, Li X. Effect of estrogen sulfation by sult1e1 and papss on the development of estrogen-dependent cancers. Cancer Sci. 2012; 103(6):1000–9. doi:10.1111/j.1349-7006.2012.02258.x.
Article
CAS
PubMed
Google Scholar
Flonta SE, Arena S, Pisacane A, Michieli P, Bardelli A. Expression and functional regulation of myoglobin in epithelial cancers. Am J Pathol. 2009; 175(1):201–6. doi:10.2353/ajpath.2009.081124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kristiansen G, Hu J, Wichmann D, Stiehl DP, Rose M, Gerhardt J, Bohnert A, ten Haaf A, Moch H, Raleigh J, Varia MA, Subarsky P, Scandurra FM, Gnaiger E, Gleixner E, Bicker A, Gassmann M, Hankeln T, Dahl E, Gorr TA. Endogenous myoglobin in breast cancer is hypoxia-inducible by alternative transcription and functions to impair mitochondrial activity: a role in tumor suppression?J Biol Chem. 2011; 286(50):43417–28. doi:10.1074/jbc.M111.227553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bicker A, Brahmer AM, Meller S, Kristiansen G, Gorr TA, Hankeln T. The distinct gene regulatory network of myoglobin in prostate and breast cancer. PLoS One. 2015; 10(11):0142662. doi:10.1371/journal.pone.0142662.
Article
Google Scholar
Ai L, Kim WJ, Alpay M, Tang M, Pardo CE, Hatakeyama S, May WS, Kladde MP, Heldermon CD, Siegel EM, Brown KD. Trim29 suppresses twist1 and invasive breast cancer behavior. Cancer Res. 2014; 74(17):4875–87. doi:10.1158/0008-5472.CAN-13-3579.
Article
CAS
PubMed
PubMed Central
Google Scholar