Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

Article
CAS
PubMed
PubMed Central
Google Scholar

Wu C, Wang Z, Song X, Feng X-S, Abnet CC, He J, Hu N, Zuo X-B, Tan W, Zhan Q, et al. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat Genet. 2014;46(9):1001–6.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mukherjee S, Thornton T, Naj A, Kim S, Kauwe J, Fardo D, Valladares O, Wijsman E, Schellenberg G, Crane P. GWAS of the joint ADGC data set identifies novel common variants associated with late-onset Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2013;9(4):550.

Google Scholar

Pain O, Dudbridge F, Cardno AG, Freeman D, Lu Y, Lundstrom S, Lichtenstein P, Ronald A. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. bioRxiv; 2018. 265512.

Walters RK, Adams MJ, Adkins AE, Aliev F, Bacanu S-A, Batzler A, Bertelsen S, Biernacka J, Bigdeli TB, Chen L-S, et al. Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. bioRxiv; 2018. 257311.

Mallard TT, Harden KP, Fromme K. Genetic risk for schizophrenia influences substance use in emerging adulthood: an event-level polygenic prediction model. bioRxiv; 2018.157636.

Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, Pickering RP, Ruan WJ, Smith SM, Huang B, et al. Epidemiology of dsm-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions iii. JAMA Psychiatry. 2015;72(8):757–66.

Article
PubMed
PubMed Central
CAS
Google Scholar

Grant BF, Saha TD, Ruan WJ, Goldstein RB, Chou SP, Jung J, Zhang H, Smith SM, Pickering RP, Huang B, et al. Epidemiology of dsm-5 drug use disorder: results from the national epidemiologic survey on alcohol and related conditions-iii. JAMA Psychiatry. 2016;73(1):39–47.

Article
PubMed
PubMed Central
Google Scholar

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004.

Article
CAS
PubMed
Google Scholar

McGeachie MJ, Clemmer GL, Lasky-Su J, Dahlin A, Raby BA, Weiss ST. Joint GWAS analysis: comparing similar GWAS at different genomic resolutions identifies novel pathway associations with six complex diseases. Genomics Data. 2014;2:202–11.

Article
PubMed
PubMed Central
Google Scholar

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):1004383.

Article
CAS
Google Scholar

Kang EY, Han B, Furlotte N, Joo JWJ, Shih D, Davis RC, Lusis AJ, Eskin E. Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice. PLoS Genet. 2014;10(1):1004022.

Article
CAS
Google Scholar

Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, Smith JA, Yanek LR, Sun YV, Edwards TL, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2015;96(1):21–36.

Article
CAS
PubMed
PubMed Central
Google Scholar

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, Duncan L, Perry JR, Patterson N, Robinson EB, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nieuwboer HA, Pool R, Dolan CV, Boomsma DI, Nivard MG. GWIS: genome-wide inferred statistics for functions of multiple phenotypes. Am J Hum Genet. 2016;99(4):917–27.

Article
CAS
PubMed
PubMed Central
Google Scholar

Hu Y, Lu Q, Liu W, Zhang Y, Li M, Zhao H. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genet. 2017;13(6):1006836.

Article
CAS
Google Scholar

Wen X, Pique-Regi R, Luca F. Integrating molecular qtl data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 2017;13(3):1006646.

Article
CAS
Google Scholar

Liu J, Wan X, Wang C, Yang C, Zhou X, Yang C. LLR: a latent low-rank approach to colocalizing genetic risk variants in multiple GWAS. Bioinformatics. 2017;33(24):3878–86.

Article
CAS
PubMed
Google Scholar

Sha Q, Wang Z, Zhang X, Zhang S. A clustering linear combination approach to jointly analyze multiple phenotypes for GWAS. Bioinformatics. 2019;35(8):1373–79.

Article
CAS
PubMed
Google Scholar

Guo B, Wu B. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data. Bioinformatics. 2019;35(8):1366–72.

Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, Nguyen-Viet TA, Wedow R, Zacher M, Furlotte NA, et al. Multi-trait analysis of genome-wide association summary statistics using mtag. Nat Genet. 2018;50(2):229.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zeng P, Hao X, Zhou X. Pleiotropic mapping and annotation selection in genome-wide association studies with penalized Gaussian mixture models. Bioinformatics. 2018;34(16):2797–807.

Article
CAS
PubMed
PubMed Central
Google Scholar

Qi G, Chatterjee N. Heritability informed power optimization (HIPO) leads to enhanced detection of genetic associations across multiple traits. PLoS Genet. 2018;14(10):1007549.

Article
CAS
Google Scholar

Siddique J, Reiter JP, Brincks A, Gibbons RD, Crespi CM, Brown CH. Multiple imputation for harmonizing longitudinal non-commensurate measures in individual participant data meta-analysis. Stat Med. 2015;34(26):3399–414.

Article
PubMed
PubMed Central
Google Scholar

Dai M, Wan X, Peng H, Wang Y, Liu Y, Liu J, Xu Z, Yang C. Joint analysis of individual-level and summary-level GWAS data by leveraging pleiotropy. Bioinformatics. 2019;35(10):1729–36.

Yang Y, Dai M, Huang J, Lin X, Yang C, Chen M, Liu J. LPG: a four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies. BMC Genomics. 2018;19(1):503.

Article
PubMed
PubMed Central
Google Scholar

Dahl A, Iotchkova V, Baud A, Johansson Å, Gyllensten U, Soranzo N, Mott R, Kranis A, Marchini J. A multiple-phenotype imputation method for genetic studies. Nat Genet. 2015;47(3):466.

Google Scholar

Hormozdiari F, Kang EY, Bilow M, Ben-David E, Vulpe C, McLachlan S, Lusis AJ, Han B, Eskin E. Imputing phenotypes for genome-wide association studies. Am J Hum Genet. 2016;99(1):89–103.

Article
CAS
PubMed
PubMed Central
Google Scholar

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat soc Ser B (Methodological). 1995;57:289–300.

Google Scholar

Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101(476):1418–29.

Article
CAS
Google Scholar

Huang J, Ma S, Zhang C-H. Adaptive lasso for sparse high-dimensional regression models. Stat Sin. 2008;18:1603–18.

Google Scholar

Wang H, Lengerich BJ, Aragam B, Xing EP. Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data. Bioinformatics. 2019;35(7):1181–87.

Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation environment. Bioinformatics. 2005;21(18):3686–7.

Article
CAS
PubMed
Google Scholar

Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BM, Hooli B, DiVito J, Ionita I, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to apoe. Am J Hum Genet. 2008;83(5):623–32.

Article
CAS
PubMed
PubMed Central
Google Scholar

Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics. 2009;25(6):714–21.

Article
CAS
PubMed
PubMed Central
Google Scholar

Marchetti-Bowick M, Yin J, Howrylak JA, Xing EP. A time-varying group sparse additive model for genome-wide association studies of dynamic complex traits. Bioinformatics. 2016;32(19):2903–10.

Article
CAS
PubMed
PubMed Central
Google Scholar

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2013;42(D1):1001–6.

Article
CAS
Google Scholar

Jayant S, Sharma B, Sharma B. Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer’s disease. Brain Res. 2016;1642:397–408.

Article
CAS
PubMed
Google Scholar

Nguyen T-L, Kwon S-H, Hong S-I, Ma S-X, Jung Y-H, Hwang J-Y, Kim H-C, Lee S-Y, Jang C-G. Transient receptor potential vanilloid type 1 channel may modulate opioid reward. Neuropsychopharmacology. 2014;39(10):2414–22.

Article
CAS
PubMed
PubMed Central
Google Scholar

Blednov Y, Harris R. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology. 2009;56(4):814–20.

Article
CAS
PubMed
PubMed Central
Google Scholar

Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron. 2008;57(5):746–59.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8(11):844.

Article
CAS
PubMed
Google Scholar

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;45(D1):353–61.

Article
CAS
Google Scholar

Yamauchi T. Neuronal ca2+/calmodulin-dependent protein kinase ii-discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull. 2005;28(8):1342–54.

Article
CAS
PubMed
Google Scholar

Robison A. Emerging role of Camkii in neuropsychiatric disease. Trends Neurosci. 2014;37(11):653–62.

Article
CAS
PubMed
Google Scholar

Müller CP, Quednow BB, Lourdusamy A, Kornhuber J, Schumann G, Giese KP. Cam kinases: from memories to addiction. Trends Pharmacol Sci. 2016;37(2):153–66.

Article
PubMed
CAS
Google Scholar

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. Drugbank 50: a major update to the drugbank database for 2018. Nucleic Acids Res. 2017;46(D1):1074–82.

Article
CAS
Google Scholar

Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2015;44(D1):380–4.

Article
CAS
Google Scholar

Cobanoglu MC, Liu C, Hu F, Oltvai ZN, Bahar I. Predicting drug–target interactions using probabilistic matrix factorization. J Chem Inf Model. 2013;53(12):3399–409.

Article
CAS
PubMed
PubMed Central
Google Scholar

Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 2015;11(4):1004969.

Article
CAS
Google Scholar

Speed D, Balding DJ. Multiblup: improved SNP-based prediction for complex traits. Genome Res. 2014;24(9):1550–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

Weissbrod O, Geiger D, Rosset S. Multikernel linear mixed models for complex phenotype prediction. Genome Res. 2016;26(7):969–79.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zhou X, Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 2013;9(2):1003264.

Article
CAS
Google Scholar

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46(2):100–6.

Article
PubMed
PubMed Central
CAS
Google Scholar

Listgarten J, Lippert C, Heckerman D. Fast-LMM-select for addressing confounding from spatial structure and rare variants. Nat Genet. 2013;45(5):470.

Article
CAS
PubMed
Google Scholar

Tucker G, Price AL, Berger B. Improving the power of GWAS and avoiding confounding from population stratification with PC-select. Genetics. 2014;197(3):1045–9.

Article
PubMed
PubMed Central
Google Scholar

Wang H, Aragam B, Xing EP. Variable selection in heterogeneous datasets: a truncated-rank sparse linear mixed model with applications to genome-wide association studies. In: IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE. 2017.

Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42(4):355–60.

Article
CAS
PubMed
PubMed Central
Google Scholar

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2011;3(1):1–122.

Article
Google Scholar

Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. DBSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

Article
CAS
PubMed
PubMed Central
Google Scholar