Plewczynski D, Ginalski K. The interactome: predicting the protein-protein interactions in cells. Cell Mol Biol Lett. 2009;14(1):1–22.
Article
CAS
PubMed
Google Scholar
Janin J, Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990;265(27):16027–30.
Article
CAS
PubMed
Google Scholar
Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interacting proteins. Nucleic Acids Res. 2000;28(1):289–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou HX, Bates PA. Modeling protein association mechanisms and kinetics. Curr Opin Struct Biol. 2013;23(6):887–93.
Article
CAS
PubMed
Google Scholar
Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. Chem Rev. 2009;109(3):839–60.
Article
CAS
PubMed
Google Scholar
Gabdoulline RR, Wade RC. Biomolecular diffusional association. Curr Opin Struct Biol. 2002;12(2):204–13.
Article
CAS
PubMed
Google Scholar
Zhou HX. Rate theories for biologists. Q Rev Biophys. 2010;43(2):219–93.
Article
PubMed
PubMed Central
Google Scholar
Schreiber G, Fersht AR. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry. 1993;32(19):5145–50.
Article
CAS
PubMed
Google Scholar
Schreiber G, Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995;248(2):478–86.
CAS
PubMed
Google Scholar
Schreiber G, Fersht AR. Rapid, electrostatically assisted association of proteins. Nat Struct Biol. 1996;3(5):427–31.
Article
CAS
PubMed
Google Scholar
Shen BJ, Hage T, Sebald W. Global and local determinants for the kinetics of interleukin-4/interleukin-4 receptor alpha chain interaction. A biosensor study employing recombinant interleukin-4-binding protein. Eur J Biochem. 1996;240(1):252–61.
Article
CAS
PubMed
Google Scholar
Radic Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin. J Biol Chem. 1997;272(37):23265–77.
Article
CAS
PubMed
Google Scholar
Wallis R, Leung KY, Osborne MJ, James R, Moore GR, Kleanthous C. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry. 1998;37(2):476–85.
Article
CAS
PubMed
Google Scholar
Frisch C, Fersht AR, Schreiber G. Experimental assignment of the structure of the transition state for the association of barnase and barstar. J Mol Biol. 2001;308(1):69–77.
Article
CAS
PubMed
Google Scholar
MacPherson RE, Ramos SV, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am J Physiol Regul Integr Comp Physiol. 2013;304(8):R644-650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys. 2008;476(1):43–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diez D, Hutchins AP, Miranda-Saavedra D. Systematic identification of transcriptional regulatory modules from protein-protein interaction networks. Nucleic Acids Res. 2014;42(1):e6.
Article
CAS
PubMed
Google Scholar
Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000;14(9):1027–47.
CAS
PubMed
Google Scholar
Li Y, Mariuzza RA. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol. 2014;5:123.
PubMed
PubMed Central
Google Scholar
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daghestani HN, Day BW. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors. 2010;10(11):9630–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown NG, Chow DC, Sankaran B, Zwart P, Prasad BV, Palzkill T. Analysis of the binding forces driving the tight interactions between beta-lactamase inhibitory protein-II (BLIP-II) and class A beta-lactamases. J Biol Chem. 2011;286(37):32723–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moal IH, Fernandez-Recio J. SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics (Oxford, England). 2012;28(20):2600–7.
Article
CAS
Google Scholar
Pan AC, Jacobson D, Yatsenko K, Sritharan D, Weinreich TM, Shaw DE. Atomic-level characterization of protein-protein association. Proc Natl Acad Sci USA. 2019;116(10):4244–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plattner N, Doerr S, De Fabritiis G, Noe F. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem. 2017;9(10):1005–11.
Article
CAS
PubMed
Google Scholar
Wieczorek G, Zielenkiewicz P. Influence of macromolecular crowding on protein-protein association rates—a Brownian dynamics study. Biophys J . 2008;95(11):5030–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ermakova E. Lysozyme dimerization: Brownian dynamics simulation. J Mol Model. 2005;12(1):34–41.
Article
CAS
PubMed
Google Scholar
Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Proteins. 2011;79(10):2813–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long H, Chang CH, King PW, Ghirardi ML, Kim K. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys J . 2008;95(8):3753–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ermakova E. Brownian dynamics simulation of the competitive reactions: binase dimerization and the association of binase and barstar. Biophys Chem. 2007;130(1–2):26–31.
Article
CAS
PubMed
Google Scholar
Gabdoulline RR, Wade RC. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol. 2001;306(5):1139–55.
Article
CAS
PubMed
Google Scholar
Frembgen-Kesner T, Elcock AH. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association. Biophys J . 2010;99(9):L75-77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmer MJ, Geyer T. Do we have to explicitly model the ions in brownian dynamics simulations of proteins? J Chem Phys. 2012;136(12):125102.
Article
PubMed
CAS
Google Scholar
Dlugosz M, Huber GA, McCammon JA, Trylska J. Brownian dynamics study of the association between the 70S ribosome and elongation factor G. Biopolymers. 2011;95(9):616–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huber GA, Kim S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J . 1996;70(1):97–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rojnuckarin A, Livesay DR, Subramaniam S. Bimolecular reaction simulation using Weighted Ensemble Brownian dynamics and the University of Houston Brownian Dynamics program. Biophys J. 2000;79(2):686–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou G, Skeel RD, Subramaniam S. Biased Brownian dynamics for rate constant calculation. Biophys J. 2000;79(2):638–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou G, Skeel RD. Robust biased Brownian dynamics for rate constant calculation. Biophys J. 2003;85(4):2147–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou HX. Brownian dynamics study of the influences of electrostatic interaction and diffusion on protein-protein association kinetics. Biophys J. 1993;64(6):1711–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Northrup SH, Luton JA, Boles JO, Reynolds JC. Brownian dynamics simulation of protein association. J Comput Aided Mol Des. 1988;1(4):291–311.
Article
CAS
PubMed
Google Scholar
Northrup SH, Erickson HP. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA. 1992;89(8):3338–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merlitz H, Rippe K, Klenin KV, Langowski J. Looping dynamics of linear DNA molecules and the effect of DNA curvature: a study by Brownian dynamics simulation. Biophys J. 1998;74(2 Pt 1):773–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mereghetti P, Gabdoulline RR, Wade RC. Brownian dynamics simulation of protein solutions: structural and dynamical properties. Biophys J. 2010;99(11):3782–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J, Beratan DN. Simulation of electron transfer between cytochrome C2 and the bacterial photosynthetic reaction center: Brownian dynamics analysis of the native proteins and double mutants. J Phys Chem B. 2005;109(15):7529–34.
Article
CAS
PubMed
Google Scholar
De Rienzo F, Gabdoulline RR, Menziani MC, De Benedetti PG, Wade RC. Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys J. 2001;81(6):3090–104.
Article
PubMed
PubMed Central
Google Scholar
Haddadian EJ, Gross EL. A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J . 2006;90(2):566–77.
Article
CAS
PubMed
Google Scholar
Haddadian EJ, Gross EL. A Brownian dynamics study of the interactions of the luminal domains of the cytochrome b6f complex with plastocyanin and cytochrome c6: the effects of the Rieske FeS protein on the interactions. Biophys J . 2006;91(7):2589–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabdoulline RR, Wade RC. On the contributions of diffusion and thermal activation to electron transfer between Phormidium laminosum plastocyanin and cytochrome f: Brownian dynamics simulations with explicit modeling of nonpolar desolvation interactions and electron transfer events. J Am Chem Soc. 2009;131(26):9230–8.
Article
CAS
PubMed
Google Scholar
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-grained protein models and their applications. Chem Rev. 2016;116(14):7898–936.
Article
CAS
PubMed
Google Scholar
Urbanc B, Borreguero JM, Cruz L, Stanley HE. Ab initio discrete molecular dynamics approach to protein folding and aggregation. Methods Enzymol. 2006;412:314–38.
Article
CAS
PubMed
Google Scholar
Bereau T, Deserno M. Generic coarse-grained model for protein folding and aggregation. J Chem Phys. 2009;130(23):235106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bai H, Yang K, Yu D, Zhang C, Chen F, Lai L. Predicting kinetic constants of protein-protein interactions based on structural properties. Proteins. 2011;79(3):720–34.
Article
CAS
PubMed
Google Scholar
Moal IH, Bates PA. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding. PLoS Comput Biol. 2012;8(1):e1002351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie ZR, Chen J, Wu Y. Predicting protein–protein association rates using coarse-grained simulation and machine learning. Sci Rep. 2017;7:46622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Wang B, Wu Y. Structural characterization and function prediction of immunoglobulin-like fold in cell adhesion and cell signaling. J Chem Inf Model. 2018;58(2):532–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanley JA. Receiver operating characteristic (ROC) methodology—the state of the art. Crit Rev Diagn Imaging. 1989;29(3):307–35.
CAS
PubMed
Google Scholar
Chen J, Xie ZR, Wu Y. Understand protein functions by comparing the similarity of local structural environments. Biochim Biophys Acta. 2017;1865(2):142–52.
Article
CAS
Google Scholar
Pang X, Zhou HX. Rate constants and mechanisms of protein-ligand binding. Annu Rev Biophys. 2017;46:105–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tetley GJN, Mott HR, Cooley RN, Owen D. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK. J Biol Chem. 2017;292(27):11361–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barozet A, Bianciotto M, Simeon T, Minoux H, Cortes J. Conformational changes in antibody Fab fragments upon binding and their consequences on the performance of docking algorithms. Immunol Lett. 2018;200:5–15.
Article
CAS
PubMed
Google Scholar
Szilagyi A, Zhang Y. Template-based structure modeling of protein-protein interactions. Curr Opin Struct Biol. 2014;24:10–23.
Article
CAS
PubMed
Google Scholar
Jamroz M, Kolinski A, Kihara D. Structural features that predict real-value fluctuations of globular proteins. Proteins. 2012;80(5):1425–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou HX. Enhancement of protein-protein association rate by interaction potential: accuracy of prediction based on local Boltzmann factor. Biophys J . 1997;73(5):2441–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlosshauer M, Baker D. Realistic protein-protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Prot Sci Publ Protein Soc. 2004;13(6):1660–9.
Article
CAS
Google Scholar
Zimmerman SB, Minton AP. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65.
Article
CAS
PubMed
Google Scholar
Zhou HX, Rivas G, Minton AP. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys. 2008;37:375–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. 2000;192:189–221.
Article
CAS
PubMed
Google Scholar
Lutz S, Iamurri SM. Protein engineering: past, present, and future. Methods Mol Biol (Clifton, NJ). 2018;1685:1–12.
Article
CAS
Google Scholar
Gupta SP. Design and development of drugs targeting protein–protein interactions—part-I. Curr Top Med Chem. 2019;19(6):393.
Article
CAS
PubMed
Google Scholar
Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-García B, Bates PA, Fernandez-Recio J, et al. Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J Mol Biol. 2015;427(19):3031–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jankauskaite J, Jimenez-Garcia B, Dapkunas J, Fernandez-Recio J, Moal IH. SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics (Oxford, England). 2019;35(3):462–9.
Article
CAS
Google Scholar
Kolinski A. Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol. 2004;51(2):349–71.
Article
CAS
PubMed
Google Scholar
de Jong DH, Singh G, Bennett WF, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput. 2013;9(1):687–97.
Article
PubMed
CAS
Google Scholar
Li J, Cheng J-h, Shi J-y, Huang F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In: Jin D, Lin S, editor. Advances in computer science and information engineering. Berlin: Springer; 2012. pp. 553-558
Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J Mol Biol. 2008;375(5):1416–33.
Article
CAS
PubMed
Google Scholar
Ravikumar KM, Huang W, Yang S. Coarse-grained simulations of protein-protein association: an energy landscape perspective. Biophys J . 2012;103(4):837–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.
Article
CAS
PubMed
Google Scholar
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087–92.
Article
CAS
Google Scholar