Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):1002533.
Article
CAS
Google Scholar
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013.
Article
CAS
PubMed
Google Scholar
Foster JA, Neufeld K-AM. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.
Article
CAS
PubMed
Google Scholar
Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16s rrna gene-based environmental surveys. Appl Environ Microbiol. 2009;75(16):5227–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan Y, Wang Q, Cole JR, Rosen GL. Using the rdp classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE. 2012;7(3):32491.
Article
CAS
Google Scholar
Lu J, Salzberg SL. Ultrafast and accurate 16s rrna microbial community analysis using kraken 2. Microbiome. 2020;8(1):1–11.
Article
Google Scholar
Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH. Metaxa2: improved identification and taxonomic classification of small and large subunit rrna in metagenomic data. Mol Ecol Resour. 2015;15(6):1403–14.
Article
CAS
PubMed
Google Scholar
Allard G, Ryan FJ, Jeffery IB, Claesson MJ. Spingo: a rapid species-classifier for microbial amplicon sequences. BMC Bioinform. 2015;16(1):1–8.
Article
CAS
Google Scholar
Caruso V, Song X, Asquith M, Karstens L. Performance of microbiome sequence inference methods in environments with varying biomass. MSystems. 2019;4(1):e00163-18.
Article
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43.
Article
PubMed
PubMed Central
Google Scholar
Stevens BR, Roesch L, Thiago P, Russell JT, Pepine CJ, Holbert RC, Raizada MK, Triplett EW. Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. Mol Psychiatry. 2020;1–11. https://doi.org/10.1038/s41380-020-0652-5.
Gibbons SM, Duvallet C, Alm EJ. Correcting for batch effects in case-control microbiome studies. PLoS Comput Biol. 2018;14(4):1006102.
Article
CAS
Google Scholar
Kumar MS, Slud EV, Okrah K, Hicks SC, Hannenhalli S, Bravo HC. Analysis and correction of compositional bias in sparse sequencing count data. BMC Genom. 2018;19(1):799.
Article
CAS
Google Scholar
Patuzzi I, Baruzzo G, Losasso C, Ricci A, Di Camillo B. metasparsim: a 16s rrna gene sequencing count data simulator. BMC Bioinform. 2019;20(9):1–13.
Google Scholar
Nearing JT, Douglas GM, Comeau AM, Langille MG. Denoising the denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ. 2018;6:5364.
Article
CAS
Google Scholar
Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, et al. Diversity of 16s rrna genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010;76(12):3886–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal database project: data and tools for high throughput rrna analysis. Nucleic Acids Res. 2014;42(D1):633–42.
Article
CAS
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. Appl Environ Microbiol. 2006;72(7):5069–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The silva ribosomal rna gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):590–6.
Article
CAS
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. Reference sequence (refseq) database at ncbi: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):733–45.
Article
CAS
Google Scholar
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segata N, Börnigen D, Morgan XC, Huttenhower C. Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4(1):1–11.
Article
CAS
Google Scholar
Ritari J, Salojärvi J, Lahti L, de Vos WM. Improved taxonomic assignment of human intestinal 16s rrna sequences by a dedicated reference database. BMC Genom. 2015;16(1):1056.
Article
CAS
Google Scholar
Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11(11):2399–406.
Article
PubMed
PubMed Central
Google Scholar
Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL. Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol. 2015;197(3):359–70.
Article
CAS
PubMed
Google Scholar
Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek. 2014;106(1):57–65.
Article
PubMed
Google Scholar
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68(1):461–6.
Article
CAS
PubMed
Google Scholar
Müller R, Nebel ME. Gefast: an improved method for otu assignment by generalising swarm’s fastidious clustering approach. BMC Bioinform. 2018;19(1):321.
Article
Google Scholar
Ghodsi M, Liu B, Pop M. Dnaclust: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinform. 2011;12(1):1–11.
Article
Google Scholar
Wang X, Yao J, Sun Y, Mai V. M-pick, a modularity-based method for otu picking of 16s rrna sequences. BMC Bioinform. 2013;14(1):43.
Article
Google Scholar
Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, et al. Evaluation of 16s rrna gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):1–11.
Article
CAS
Google Scholar
White JR, Navlakha S, Nagarajan N, Ghodsi M-R, Kingsford C, Pop M. Alignment and clustering of phylogenetic markers-implications for microbial diversity studies. BMC Bioinform. 2010;11(1):152.
Article
CAS
Google Scholar
He Y, Caporaso JG, Jiang X-T, Sheng H-F, Huse SM, Rideout JR, Edgar RC, Kopylova E, Walters WA, Knight R, et al. Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity. Microbiome. 2015;3(1):20.
Article
PubMed
PubMed Central
Google Scholar
Nguyen N-P, Warnow T, Pop M, White B. A perspective on 16s rrna operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes. 2016;2(1):1–8.
Article
CAS
Google Scholar
Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for clustering 16s rrna sequences into otus. PLoS ONE. 2013;8(8):70837.
Article
CAS
Google Scholar
Asgari E, Münch PC, Lesker TR, McHardy AC, Mofrad MR. Ditaxa: nucleotide-pair encoding of 16s rrna for host phenotype and biomarker detection. Bioinformatics. 2019;35(14):2498–500.
Article
CAS
PubMed
Google Scholar
Asgari E, Garakani K, McHardy AC, Mofrad MR. Micropheno: predicting environments and host phenotypes from 16s rrna gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics. 2018;34(13):32–42.
Article
CAS
Google Scholar
Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE. Impact of training sets on classification of high-throughput bacterial 16s rrna gene surveys. ISME J. 2012;6(1):94–103.
Article
CAS
PubMed
Google Scholar
Yang B, Wang Y, Qian P-Y. Sensitivity and correlation of hypervariable regions in 16s rrna genes in phylogenetic analysis. BMC Bioinform. 2016;17(1):1–8.
CAS
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18.
Article
Google Scholar
Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, Pei Z, Blaser MJ, Aliferis CF, Alekseyenko AV. A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013;1(1):1–12.
Article
Google Scholar
Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25(5):1054–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, Metcalf JL. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes. 2018;9(2):104.
Article
PubMed Central
CAS
Google Scholar
Bukin YS, Galachyants YP, Morozov I, Bukin S, Zakharenko A, Zemskaya T. The effect of 16s rrna region choice on bacterial community metabarcoding results. Sci data. 2019;6:190007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, You Z, Jia L, Wang F. Autism spectrum disorder is associated with gut microbiota disorder in children. BMC Pediatr. 2019;19(1):1–7.
Article
Google Scholar
Kang D-W, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, Krajmalnik-Brown R. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8(7):68322.
Article
CAS
Google Scholar
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.
Article
PubMed
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480.
Article
CAS
PubMed
Google Scholar
Hu H-J, Park S-G, Jang HB, Choi M-G, Park K-H, Kang JH, Park SI, Lee H-J, Cho S-H. Obesity alters the microbial community profile in Korean adolescents. PLoS ONE. 2015;10(7):0134333.
Google Scholar
Dougal K, Harris PA, Girdwood SE, Creevey CJ, Curtis GC, Barfoot CF, Argo CM, Newbold CJ. Changes in the total fecal bacterial population in individual horses maintained on a restricted diet over 6 weeks. Front Microbiol. 2017;8:1502.
Article
PubMed
PubMed Central
Google Scholar
Tito RY, Chaffron S, Caenepeel C, Lima-Mendez G, Wang J, Vieira-Silva S, Falony G, Hildebrand F, Darzi Y, Rymenans L, et al. Population-level analysis of blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68(7):1180–9.
Article
CAS
PubMed
Google Scholar
Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT. Comparison of illumina paired-end and single-direction sequencing for microbial 16s rrna gene amplicon surveys. ISME J. 2012;6(7):1273–6.
Article
CAS
PubMed
Google Scholar
Vassalos CM, Spanakos G, Vassalou E, Papadopoulou C, Vakalis N. Differences in clinical significance and morphologic features of Blastocystis sp subtype 3. Am J Clin Pathol. 2010;133(2):251–8.
Article
PubMed
Google Scholar
Tan KS. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev. 2008;21(4):639–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boorom KF. Is this recently characterized gastrointestinal pathogen responsible for rising rates of inflammatory bowel disease (ibd) and ibd associated autism in europe and the united states in the 1990s? Med Hypotheses. 2007;69(3):652–9.
Article
PubMed
Google Scholar
PubMed. U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/pubmed/. Accessed 1 Aug 2020.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. Dada2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods. 2018;15(10):796.
Article
CAS
PubMed
PubMed Central
Google Scholar
A core gut microbiome in obese and lean twins. - ID 77. https://qiita.ucsd.edu/public/?artifact_id=6821. Accessed 12 Oct 2019.
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.
Article
PubMed
PubMed Central
Google Scholar
Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, Zengler K, Knight R. Establishing microbial composition measurement standards with reference frames. Nat Commun. 2019;10(1):1–11.
Article
CAS
Google Scholar
Camargo A, Azuaje F, Wang H, Zheng H. Permutation-based statistical tests for multiple hypotheses. Source Code Biol Med. 2008;3(1):1–8.
Article
CAS
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster rna homology searches. Bioinformatics. 2013;29(22):2933–5.
Article
CAS
PubMed
PubMed Central
Google Scholar