Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci. 1976;73(11):3852–6. https://doi.org/10.1073/pnas.73.11.3852.
Article
CAS
Google Scholar
Arnberg AC, Van Ommen G-JB, Grivell LA, Van Bruggen EFJ, Borst P. Some yeast mitochondrial RNAs are circular. Cell. 1980;19(2):313–9. https://doi.org/10.1016/0092-8674(80)90505-X.
Article
CAS
Google Scholar
Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986;323:558–60. https://doi.org/10.1038/323558a0.
Article
CAS
Google Scholar
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7(1):155–60. https://doi.org/10.1096/fasebj.7.1.7678559.
Article
CAS
Google Scholar
Qian L, Vu MN, Carter M, Wilkinson MF. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acids Res. 1992;20(20):5345–50. https://doi.org/10.1093/nar/20.20.5345.
Article
CAS
Google Scholar
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7(2):1–12. https://doi.org/10.1371/journal.pone.0030733.
Article
CAS
Google Scholar
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8. https://doi.org/10.1038/nature11928.
Article
CAS
Google Scholar
Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10(10):1–13. https://doi.org/10.1371/journal.pone.0141214.
Article
CAS
Google Scholar
Bahn JH, Zhang Q, Li F, Chan T-M, Lin X, Kim Y, Wong DTW, Xiao X. The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–30. https://doi.org/10.1373/clinchem.2014.230433.
Article
CAS
Google Scholar
Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6. https://doi.org/10.1016/j.cca.2015.02.018. arXiv:2568.9795.
Article
CAS
Google Scholar
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation: exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci Rep. 2015;5(8057):1–10. https://doi.org/10.1038/srep08057.
Article
CAS
Google Scholar
Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016. https://doi.org/10.1038/srep30919.
Article
Google Scholar
Tan WLW, Lim BTS, Anene-Nzelu CGO, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TDA, Li PYQ, Richards AM, Foo RSY. A landscape of circular RNA expression in the human heart. Cardiovasc Res. 2016;113(3):298–309. https://doi.org/10.1093/cvr/cvw250.
Article
CAS
Google Scholar
Panda AC, Abdelmohsen K, Gorospe M. RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol. 2017;1534:79–87. https://doi.org/10.1007/978-1-4939-6670-7_7. arXiv:2781.2869.
Article
CAS
Google Scholar
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8. https://doi.org/10.1038/nature11993.
Article
CAS
Google Scholar
Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 2014;30(16):2243–6. https://doi.org/10.1093/bioinformatics/btu257.
Denzler R, Agarwal V, Stefano J, Bartel D, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54(5):766–76. https://doi.org/10.1016/j.molcel.2014.03.045.
Hsiao K-Y, Lin Y-C, Gupta SK, Chang N, Yen L, Sun HS, Tsai S-J. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017;77(9):2339–50. https://doi.org/10.1158/0008-5472.CAN-16-1883.
Article
CAS
Google Scholar
Gaffo E, Bonizzato A, Te Kronnie G, Bortoluzzi S. CirComPara: a multi-method comparative bioinformatics pipeline to detect and study circRNAs from RNA-seq data. Noncoding RNA. 2017;3:1. https://doi.org/10.3390/ncrna3010008.
Article
CAS
Google Scholar
Gaffo E, Buratin A, Dal Molin A, Bortoluzzi S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief Bioinf. 2022;23(1):418. https://doi.org/10.1093/bib/bbab418.
Article
CAS
Google Scholar
Liu Z, Ding H, She J, Chen C, Zhang W, Yang E. DEBKS: a tool to detect differentially expressed circular RNA. Genom Proteom Bioinform. 2021. https://doi.org/10.1016/j.gpb.2021.01.003.
Article
Google Scholar
Hossain MdT, Peng Y, Feng S, Wei Y. FcircSEC: an R package for full length circRNA sequence extraction and classification. Int J Genom. 2020;2020:9084901. https://doi.org/10.1155/2020/9084901.
Article
CAS
Google Scholar
Aufiero S, Reckman YJ, Tijsen AJ, Pinto YM, Creemers EE. circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs. BMC Bioinform. 2020;21(1):1–9. https://doi.org/10.1186/s12859-020-3500-3.
Article
CAS
Google Scholar
Jakobi T, Uvarovskii A, Dieterich C. Circtools: a one-stop software solution for circular RNA research. Bioinformatics. 2019;35(13):2326–8. https://doi.org/10.1093/bioinformatics/bty948. arXiv:3046.2173.
Article
CAS
Google Scholar
Chen L, Wang F, Bruggeman EC, Li C, Yao B. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs. Bioinformatics. 2020;36(2):539–45. https://doi.org/10.1093/bioinformatics/btz606.
Article
CAS
Google Scholar
Li L, Bu D, Zhao Y. CircRNAwrap: a flexible pipeline for circRNA identification, transcript prediction, and abundance estimation. FEBS Lett. 2019;593(11):1179–89. https://doi.org/10.1002/1873-3468.13423.
Article
CAS
Google Scholar
Humphreys DT, Fossat N, Demuth M, Tam PPL, Ho JWK. Ularcirc: visualization and enhanced analysis of circular RNAs via back and canonical forward splicing. Nucleic Acids Res. 2019;47(20):123. https://doi.org/10.1093/nar/gkz718.
Article
CAS
Google Scholar
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35:316–9. https://doi.org/10.1038/nbt.3820.
Article
CAS
Google Scholar
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–8. https://doi.org/10.1038/s41587-020-0439-x.
Article
CAS
Google Scholar
Docker. https://www.docker.com/
Apptainer. https://apptainer.org/
Andrews S. FastQC: a quality control tool for high throughput sequence data.
Bushnell B. BBMap. SourceForge. https://sourceforge.net/projects/bbmap
Zhang X-O, Dong R, Zhang Y, Zhang J-L, Luo Z, Zhang J, Chen L-L, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87. https://doi.org/10.1101/gr.202895.115.
Article
CAS
Google Scholar
Westholm J, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker S, Graveley B, Lai E. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9(5):1966–80. https://doi.org/10.1016/j.celrep.2014.10.062.
Article
CAS
Google Scholar
Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 2016;32(7):1094–6. https://doi.org/10.1093/bioinformatics/btv656.
Article
CAS
Google Scholar
Zhang J, Chen S, Yang J, Zhao F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun. 2020;11(90):1–14. https://doi.org/10.1038/s41467-019-13840-9.
Article
CAS
Google Scholar
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010;38(18):178. https://doi.org/10.1093/nar/gkq622.
Article
CAS
Google Scholar
Otto C, Stadler PF, Hoffmann S. Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics. 2014;30(13):1837–43. https://doi.org/10.1093/bioinformatics/btu146. arXiv:2462.6854.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013; arXiv:1303.3997.
Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16(1):4. https://doi.org/10.1186/s13059-014-0571-3. arXiv:2558.3365.
Article
CAS
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):1–14. https://doi.org/10.1186/gb-2003-5-1-r1.
Article
Google Scholar
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015. https://doi.org/10.7554/eLife.05005.
Article
Google Scholar
Clark PM, Chitnis N, Shieh M, Kamoun M, Johnson FB, Monos D. Novel and haplotype specific MicroRNAs encoded by the major histocompatibility complex. Sci Rep. 2018;8(3832):1–10. https://doi.org/10.1038/s41598-018-19427-6.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
Google Scholar
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics. 2021;219(3):145. https://doi.org/10.1093/genetics/iyab145. arXiv:3474.0247.
Article
Google Scholar
nf-core/fetchngs. https://github.com/nf-core/fetchngs
Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol. 2017;13(6):1005420. https://doi.org/10.1371/journal.pcbi.1005420.
Article
CAS
Google Scholar
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20(11):1666–70. https://doi.org/10.1261/rna.043687.113.
Article
CAS
Google Scholar
Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 2016;6(34985):1–6. https://doi.org/10.1038/srep34985.
Article
CAS
Google Scholar
Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, The RGASP Consortium, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R, Bertone P. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods. 2013;10(12):1185. https://doi.org/10.1038/nmeth.2722