Moult J: Comparison of database potentials and molecular mechanics force fields. Curr Opin Struct Biol 1997, 7: 194–199. 10.1016/S0959-440X(97)80025-5
Article
CAS
PubMed
Google Scholar
Vajda S, Sippl M, Novotny J: Empirical potentials and functions for protein folding and binding. Curr Opin Struct Biol 1997, 7: 222–228. 10.1016/S0959-440X(97)80029-2
Article
CAS
PubMed
Google Scholar
Mirny LA, Shakhnovich EI: How to derive a protein folding potential? A new approach to an old problem. J Mol Biol 1996, 264: 1164–1179. 10.1006/jmbi.1996.0704
Article
CAS
PubMed
Google Scholar
Hao MH, Scheraga HA: Designing potential energy functions for protein folding. Curr Opin Struct Biol 1999, 9: 184–188. 10.1016/S0959-440X(99)80026-8
Article
CAS
PubMed
Google Scholar
Miyazawa S, Jernigan RL: An empirical energy potential with a reference state for protein fold and sequence recognition. Proteins 1999, 36: 357–369. 10.1002/(SICI)1097-0134(19990815)36:3<357::AID-PROT10>3.0.CO;2-U
Article
CAS
PubMed
Google Scholar
Lazaridis T, Karplus M: Effective energy functions for protein structure prediction. Curr Opin Struct Biol 2000, 10: 145. 10.1016/S0959-440X(00)00063-4
Article
Google Scholar
Felts AK, Gallicchio E, Wallqvist A, Levy RM: Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model. Proteins 2002, 48: 404–422. 10.1002/prot.10171
Article
CAS
PubMed
Google Scholar
Dominy BN, Brooks CL: Identifying native-like protein structures using physics-based potentials. J Comput Chem 2002, 23: 147–160. 10.1002/jcc.10018
Article
CAS
PubMed
Google Scholar
Lazaridis T, Karplus M: Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J Mol Biol 1999, 288: 477–487. 10.1006/jmbi.1999.2685
Article
CAS
PubMed
Google Scholar
Jones DT: GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 1999, 287: 797–815. 10.1006/jmbi.1999.2583
Article
CAS
PubMed
Google Scholar
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983, 4: 187–217. 10.1002/jcc.540040211
Article
CAS
Google Scholar
Lazaridis T, Karplus M: Effective energy function for proteins in solution. Proteins. Proteins 1999, 35: 133–152. 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N
Article
CAS
PubMed
Google Scholar
Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G: A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1984, 106: 765–787. 10.1021/ja00315a051
Article
CAS
Google Scholar
Jorgensen WL, Maxwell DS, Tirado-Rives J: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996, 118: 11225–111236. 10.1021/ja9621760
Article
CAS
Google Scholar
Sippl MJ: Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 1990, 213: 859–883. 10.1016/S0022-2836(05)80269-4
Article
CAS
PubMed
Google Scholar
Sippl MJ: Knowledge-based potentials for proteins. Curr Opin Struct Biol 1995, 5: 229–235. 10.1016/0959-440X(95)80081-6
Article
CAS
PubMed
Google Scholar
Covell DG: Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins 1992, 14: 409–420. 10.1002/prot.340140310
Article
CAS
PubMed
Google Scholar
Sun S: Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Sci 1993, 2: 762–785. 10.1002/pro.5560020508
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer A, Beyer A: An improved pair potential to recognize native protein folds. Proteins 1994, 18: 254–261. 10.1002/prot.340180306
Article
CAS
PubMed
Google Scholar
Jernigan RL, Bahar I: Structure-derived potentials and protein simulations. Curr Opin Struct Biol 1996, 6: 195–209. 10.1016/S0959-440X(96)80075-3
Article
CAS
PubMed
Google Scholar
Melo F, Feytmans E: Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 1998, 277: 1141–1152. 10.1006/jmbi.1998.1665
Article
CAS
PubMed
Google Scholar
Tobi D, Elber R: Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins 2000, 41: 40–46. 10.1002/1097-0134(20001001)41:1<40::AID-PROT70>3.0.CO;2-U
Article
CAS
PubMed
Google Scholar
Melo F, Sanchez R, Sali A: Statistical potentials for fold assessment. Protein Sci 2002, 11: 430–448. 10.1110/ps.25502
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Q, Wang X, Lin L: Novel knowledge-based mean force potential at the profile level. BMC Bioinformatics 2006, 7: 324. 10.1186/1471-2105-7-324
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Zhu Q, Shi Y, Liu H: How well can we predict native contacts in proteins based on decoy structures and their energies? Proteins 2003, 52: 598–608. 10.1002/prot.10444
Article
CAS
PubMed
Google Scholar
McConkey BJ, Sobolev V, Edelman M: Discrimination of native protein structures using atom-atom contact scoring. Proc Natl Acad Sci U S A 2003, 100: 3215–3220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Liu S, Zhou H, Zhou Y: An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci 2004, 13: 400–411. 10.1110/ps.03348304
Article
CAS
PubMed
PubMed Central
Google Scholar
Misura KM, Chivian D, Rohl CA, Kim DE, Baker D: Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci 2006, 103: 5361–5366. 10.1073/pnas.0509355103
Article
CAS
PubMed
PubMed Central
Google Scholar
Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997, 268: 209–225. 10.1006/jmbi.1997.0959
Article
CAS
PubMed
Google Scholar
Shen MY, Sali A: Statistical potential for assessment and prediction of protein structures. Protein Sci 2006, 15: 2507–2524. 10.1110/ps.062416606
Article
CAS
PubMed
PubMed Central
Google Scholar
Fogolari F, Pieri L, Dovier A, Bortolussi L, Giugliarelli G, Corazza A, Esposito G, Viglino P: Scoring predictive models using a reduced representation of proteins: model and energy definition. BMC Struct Biol 2007, 7: 15. 10.1186/1472-6807-7-15
Article
PubMed
PubMed Central
Google Scholar
Mirzaie M, Eslahchi C, Pezeshk H, Sadeghi M: A distance-dependent atomic knowledge-based potential and force for discrimination of native structures from decoys. Proteins 2009, 77: 454–463. 10.1002/prot.22457
Article
CAS
PubMed
Google Scholar
Li X, Hu C, Liang J: Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 2003, 53: 792–805. 10.1002/prot.10442
Article
CAS
PubMed
Google Scholar
Miyazawa S, Jernigan RL: Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 1996, 256: 623–644. 10.1006/jmbi.1996.0114
Article
CAS
PubMed
Google Scholar
Pauling L: The Nature of the Chemical Bond. 3rd edition. Ithaca, N.Y.: Cornell University Press; 1960.
Google Scholar
Hobohm U, Sander C: Enlarged representative set of protein structures. Protein Sci 1994, 3: 522–524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28: 235–242. 10.1093/nar/28.1.235
Article
CAS
PubMed
PubMed Central
Google Scholar
Fogolari F, Tosatto SC, Colombo G: A decoy set for the thermostable subdomain from chicken villin headpiece, comparison of different free energy estimators. BMC Bioinformatics 2005, 6: 301. 10.1186/1471-2105-6-301
Article
PubMed
PubMed Central
Google Scholar
Holm L, Sander C: Evaluation of protein models by atomic solvation preference. J Mol Biol 1992, 225: 93–105. 10.1016/0022-2836(92)91028-N
Article
CAS
PubMed
Google Scholar
Samudrala R, Levitt M: A comprehensive analysis of 40 blind protein structure predictions. BMC Struct Biol 2002, 2: 3–18. 10.1186/1472-6807-2-3
Article
PubMed
PubMed Central
Google Scholar
Samudrala R, Levitt M: Decoys'R' Us:a database of incorrect conformation to improve protein structure prediction. Protein Sci 2000, 9: 1399–1401. 10.1110/ps.9.7.1399
Article
CAS
PubMed
PubMed Central
Google Scholar
Park B, Levitt M: Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol 1996, 285: 367–392. 10.1006/jmbi.1996.0256
Article
Google Scholar
Rajgaria R, McAllister SR, Floudas CA: A novel high resolution Calpha--Calpha distance dependent force field based on a high quality decoy set. Proteins 2006, 65: 726–741. 10.1002/prot.21149
Article
CAS
PubMed
Google Scholar
Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, Baker D: An improved protein decoy set for testing energy functions for protein structure prediction. Proteins 2003, 53: 76–87. 10.1002/prot.10454
Article
CAS
PubMed
Google Scholar
Kabsch W: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section D-Biological Crystallography 1976, A32: 922–923. 10.1107/S0567739476001873
Google Scholar
Reck GregoryM, Vaisman IosifI: Decoy Discrimination Using Contact Potentials Based on Delaunay Tessellation of Hydrated Proteins. IEEE Computer Society 2007, 159–167.
Google Scholar