Vincent JJ, Tai CH, Sathyanarayana BK, Lee B: Assessment of CASP6 predictions for new and nearly new fold targets. Proteins 2005, 61(Suppl 7):67–83. 10.1002/prot.20722
Article
CAS
PubMed
Google Scholar
Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A: Critical assessment of methods of protein structure prediction-Round VII. Proteins 2007, 69(Suppl 8):3–9. 10.1002/prot.21767
Article
CAS
PubMed
PubMed Central
Google Scholar
Jauch R, Yeo HC, Kolatkar PR, Clarke ND: Assessment of CASP7 structure predictions for template free targets. Proteins 2007, 69(Suppl 8):57–67. 10.1002/prot.21771
Article
CAS
PubMed
Google Scholar
Kryshtatovych A, Fidelis K, Moult J: CASP8 results in context of previous experiments. Proteins 2009, 77(9 Suppl):217–228. 10.1002/prot.22562
Article
Google Scholar
Anfinsen CB, Haber E, Sela M, White FH Jr: The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 1961, 47: 1309–14. 10.1073/pnas.47.9.1309
Article
CAS
PubMed
PubMed Central
Google Scholar
Anfinsen CB: Principles that govern the folding of protein chains. Science 1973, 181(96):223–230. 10.1126/science.181.4096.223
Article
CAS
PubMed
Google Scholar
Fedorov AN, Baldwin TO: Cotranslational protein folding. J Biol Chem 1997, 272(52):32715–32718. 10.1074/jbc.272.52.32715
Article
CAS
PubMed
Google Scholar
Basharov MA: Cotranslational folding of proteins. Biochemistry (Mosc) 2000, 65(12):1380–1384. 10.1023/A:1002800822475
Article
CAS
Google Scholar
Basharov MA: Protein folding. J Cell Mol Med 2003, 7(3):223–237. 10.1111/j.1582-4934.2003.tb00223.x
Article
CAS
PubMed
Google Scholar
Kolb VA: Cotranslational protein folding. Mol Biol 2001, 35(4):584–590. 10.1023/A:1010579111510
Article
CAS
Google Scholar
Giglione C, Fieulaine S, Meinnel T: Cotranslational processing mechanisms: towards a dynamic 3D model. Trends in Biochemical Sciences 2009, 34: 417–426. 10.1016/j.tibs.2009.04.003
Article
CAS
PubMed
Google Scholar
Kadokura H, Beckwith J: Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 2009, 138: 1164–1173. 10.1016/j.cell.2009.07.030
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen S: Escherichia coli ribosomes translate in vivo with variable rate. EMBO J 1984, 3(12):2895–2898.
CAS
PubMed
PubMed Central
Google Scholar
Wilson KS, Noller HF: Molecular movement inside the translational engine. Cell 1998, 92(3):337–349. 10.1016/S0092-8674(00)80927-7
Article
CAS
PubMed
Google Scholar
Clarke T, Clark P: Rare codons cluster. PLoS ONE 2008, 3: e3412. 10.1371/journal.pone.0003412
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Hubalewska M, Ignatova Z: Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural and Molecular Biology 2009, 16: 274–280. 10.1038/nsmb.1554
Article
CAS
PubMed
Google Scholar
Zhang G, Ignatova Z: Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS ONE 2009, 4: e5036. 10.1371/journal.pone.0005036
Article
PubMed
PubMed Central
Google Scholar
Krüger MK, Pedersen S, Hagervall TG, Sørensen MA: The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 1998, 284(3):621–631. 10.1006/jmbi.1998.2196
Article
PubMed
Google Scholar
Sørensen MA, Pedersen S: Absolute in vivo translation rates of individual codons in Escherichia coli . The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 1991, 222(2):265–280. 10.1016/0022-2836(91)90211-N
Article
PubMed
Google Scholar
Varenne S, Buc J, Lloubes R, Lazdunski C: Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 1984, 180(3):549–576. 10.1016/0022-2836(84)90027-5
Article
CAS
PubMed
Google Scholar
Roder H, Elöve GA, Englander SW: Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 1988, 335(6192):700–704. 10.1038/335700a0
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs MS, Roder H: Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci USA 1992, 89(6):2017–2021. 10.1073/pnas.89.6.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Dahlquist FW: Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogen exchange and two-dimensional NMR. Biochemistry 1992, 31(20):4749–4756. 10.1021/bi00135a002
Article
CAS
PubMed
Google Scholar
Kiho Y, Rich A: Induced enzyme formed on bacterial polyribosomes. Proc Natl Acad Sci USA 1964, 51: 111–118. 10.1073/pnas.51.1.111
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicola AV, Chen W, Helenius A: Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat Cell Biol 1999, 1(6):341–345. 10.1038/14032
Article
CAS
PubMed
Google Scholar
Sánchez IE, Morillas M, Zobeley E, Kiefhaber T, Glockshuber R: Fast folding of the two-domain semliki forest virus capsid protein explains co-translational proteolytic activity. J Mol Biol 2004, 338: 159–167. 10.1016/j.jmb.2004.02.037
Article
PubMed
Google Scholar
Komar AA, Kommer A, Krasheninnikov IA, Spirin AS: Cotranslational folding of globin. J Biol Chem 1997, 272(16):10646–10651. 10.1074/jbc.272.16.10646
Article
CAS
PubMed
Google Scholar
Hsu STD, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J: Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci USA 2007, 104(42):16516–16521. 10.1073/pnas.0704664104
Article
CAS
PubMed
PubMed Central
Google Scholar
Voelz VA, Shell MS, Dill KA: Predicting peptide structures in native proteins from physical simulations of fragments. PLoS Comput Biol 2009, 5(2):e1000281. 10.1371/journal.pcbi.1000281
Article
PubMed
PubMed Central
Google Scholar
Bergman LW, Kuehl WM: Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem 1979, 254(18):8869–8876.
CAS
PubMed
Google Scholar
Bergman LW, Kuehl WM: Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J Biol Chem 1979, 254(13):5690–5694.
CAS
PubMed
Google Scholar
Lim VI, Spirin AS: Stereochemical analysis of ribosomal transpeptidation. Conformation of nascent peptide. J Mol Biol 1986, 188(4):565–574. 10.1016/S0022-2836(86)80006-7
Article
CAS
PubMed
Google Scholar
Jenni S, Ban N: The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr Opin Struct Biol 2003, 13(2):212–219. 10.1016/S0959-440X(03)00034-4
Article
CAS
PubMed
Google Scholar
Voss NR, Gerstein M, Steitz TA, Moore PB: The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 2006, 360(4):893–906. 10.1016/j.jmb.2006.05.023
Article
CAS
PubMed
Google Scholar
Tsalkova T, Odom OW, Kramer G, Hardesty B: Different conformations of nascent peptides on ribosomes. J Mol Biol 1998, 278(4):713–723. 10.1006/jmbi.1998.1721
Article
CAS
PubMed
Google Scholar
Ziv G, Haran G, Thirumalai D: Ribosome exit tunnel can entropically stabilize alpha-helices. Proc Natl Acad Sci USA 2005, 102(52):18956–18961. 10.1073/pnas.0508234102
Article
CAS
PubMed
PubMed Central
Google Scholar
Seckler R, Fuchs A, King J, Jaenicke R: Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J Biol Chem 1989, 264(20):11750–11753.
CAS
PubMed
Google Scholar
Fedorov AN, Baldwin TO: Process of biosynthetic protein folding determines the rapid formation of native structure. J Mol Biol 1999, 294(2):579–586. 10.1006/jmbi.1999.3281
Article
CAS
PubMed
Google Scholar
Evans MS, Clarke TF, Clark PL: Conformations of co-translational folding intermediates. Protein Pept Lett 2005, 12(2):189–195. 10.2174/0929866053005908
Article
CAS
PubMed
Google Scholar
Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU: Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol 1999, 6(7):697–705. 10.1038/10754
Article
CAS
PubMed
Google Scholar
Evans MS, Sander IM, Clark PL: Cotranslational folding promotes β -helix formation and avoids aggregation in vivo. J Mol Biol 2008, 383(3):683–692. 10.1016/j.jmb.2008.07.035
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsou CL: Folding of the nascent peptide chain into a biologically active protein. Biochemistry 1988, 27(6):1809–1812. 10.1021/bi00406a001
Article
CAS
PubMed
Google Scholar
Fedorov AN, Baldwin TO: Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci USA 1995, 92(4):1227–1231. 10.1073/pnas.92.4.1227
Article
CAS
PubMed
PubMed Central
Google Scholar
Frydman J: Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 2001, 70: 603–647. 10.1146/annurev.biochem.70.1.603
Article
CAS
PubMed
Google Scholar
Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002, 295(5561):1852–1858. 10.1126/science.1068408
Article
CAS
PubMed
Google Scholar
Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B: Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 1999, 400(6745):693–696. 10.1038/23301
Article
CAS
PubMed
Google Scholar
Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU: Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 1999, 97(6):755–765. 10.1016/S0092-8674(00)80787-4
Article
CAS
PubMed
Google Scholar
Srinivasan R, Rose G: LINUS: A hierarchical procedure to predict the fold of a protein. Proteins 1995, 22: 81–99. 10.1002/prot.340220202
Article
CAS
PubMed
Google Scholar
Bornberg-Bauer E: How are model protein structures distributed in sequence space? Biophys J 1997, 73(5):2393–2403. 10.1016/S0006-3495(97)78268-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrissey MP, Ahmed Z, Shakhnovich EI: The role of cotranslation in protein folding: a lattice model study. Polymer 2004, 45: 557–571. 10.1016/j.polymer.2003.10.090
Article
CAS
Google Scholar
Huard FPE, Deane CM, Wood GR: Modelling sequential protein folding under kinetic control. Bioinformatics 2006, 22(14):e203-e210. 10.1093/bioinformatics/btl248
Article
CAS
PubMed
Google Scholar
Lu HM, Liang J: A model study of protein nascent chain and cotranslational folding using hydrophobic-polar residues. Proteins 2008, 70(2):442–449. 10.1002/prot.21575
Article
CAS
PubMed
Google Scholar
Wang P, Klimov DK: Lattice simulations of cotranslational folding of single domain proteins. Proteins 2008, 70(3):925–937. 10.1002/prot.21547
Article
CAS
PubMed
Google Scholar
Elcock AH: Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput Biol 2006, 2(7):e98. 10.1371/journal.pcbi.0020098
Article
PubMed
PubMed Central
Google Scholar
Senturk S, Baday S, Arkun Y, Erman B: Optimum folding pathways for growing protein chains. Phys Biol 2007, 4(4):305–316. 10.1088/1478-3975/4/4/007
Article
CAS
PubMed
Google Scholar
Norcross T, Yeates T: A framework for describing topological frustration in models of protein folding. JMB 2006, 362: 605–621. 10.1016/j.jmb.2006.07.054
Article
CAS
Google Scholar
Alexandrov N: Structural argument for N-terminal initiation of protein folding. Protein Sci 1993, 2(11):1989–1991. 10.1002/pro.5560021121
Article
CAS
PubMed
PubMed Central
Google Scholar
Laio A, Micheletti C: Are structural biases at protein termini a signature of vectorial folding? Proteins 2006, 62: 17–23. 10.1002/prot.20712
Article
CAS
PubMed
Google Scholar
Taylor WR: Topological accessibility shows a distinct asymmetry in the folds of βα proteins. FEBS Lett 2006, 580(22):5263–5267. 10.1016/j.febslet.2006.08.070
Article
CAS
PubMed
Google Scholar
Deane CM, Dong M, Huard FPE, Lance BK, Wood GR: Cotranslational protein folding-fact or fiction? Bioinformatics 2007, 23(13):i142-i148. 10.1093/bioinformatics/btm175
Article
CAS
PubMed
Google Scholar
Winstanley HF, Abeln S, Deane CM: How old is your fold? Bioinformatics 2005, 21(Suppl 1):i449-i458. 10.1093/bioinformatics/bti1008
Article
CAS
PubMed
Google Scholar
Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997, 268: 209–225. 10.1006/jmbi.1997.0959
Article
CAS
PubMed
Google Scholar
Simons KT, Bonneau R, Ruczinski I, Baker D: Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 1999, (Suppl 3):171–176. 10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z
Chivian D, Kim DE, Malmström L, Bradley P, Robertson T, Murphy P, Strauss CEM, Bonneau R, Rohl CA, Baker D: Automated prediction of CASP-5 structures using the Robetta server. Proteins 2003, 53(Suppl 6):524–533. 10.1002/prot.10529
Article
CAS
PubMed
Google Scholar
Chivian D, Kim DE, Malmström L, Schonbrun J, Rohl CA, Baker D: Prediction of CASP6 structures using automated Robetta protocols. Proteins 2005, 61(Suppl 7):157–166. 10.1002/prot.20733
Article
CAS
PubMed
Google Scholar
Wang G, Dunbrack RL: PISCES: a protein sequence culling server. Bioinformatics 2003, 19(12):1589–1591. 10.1093/bioinformatics/btg224
Article
CAS
PubMed
Google Scholar
Zemla A: LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 2003, 31(13):3370–3374. 10.1093/nar/gkg571
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research 2007, (35 Web Server):W375-W383. 10.1093/nar/gkm216